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1 INTRODUCTION 
Recently poromechanical approaches are coupled to damage-plasticity models to take into 

account the moisture influence on damage and fracture processes1-5. The penetration of fluids 
through cracks is usually modeled by an increased permeability in a certain zone, using 
empirical laws based on average crack widths. Drawback of a continuum model is that a crack 
strain over a band governs the damage process rather than a crack width. In this way the 
continuum model does not take into account the peculiar features of cracks with varying 
width and connectivity, which may highly influence the resulting permeability6-10. Apart from 
that, when trying to model the steep moisture fronts in the fracture one is confronted with 
numerical instabilities, caused by the difference in magnitude between permeability of 
fracture and matrix10.  

To overcome these problems a combination of two discrete models for simulating discrete 
cracking and liquid flow in fractures is presented. The discrete model for the damage process 
is a partition-of-unity (PU) crack model11, where cracks are modeled as displacement 
continuities, which can run freely through the finite element mesh. To simulate moisture 
transport in the fracture, a 1D moving front model for liquid flow in a fracture is combined 
with a finite element model that solves the unsaturated liquid flow in the uncracked matrix 12. 
These discrete models are coupled to a poromechanical continuum model, describing the 
moisture influence on the mechanical behavior and the transport in the uncracked porous 
matrix. To exemplify the potential of the proposed model, we show two different test cases 
showing the strong coupling between moisture and damaging processes. 

2 COUPLED MODEL 
In this section the main features of the coupled PU-crack model for hygro-mechanical 

loading are summarized. An extensive description of the model can be found in Roels et al.13. 
The hygro-mechanical response is obtained by alternately solving the mechanical and the 

hygric problem for each time step. Both problems are non-linear and require an iterative 
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solution. For the mechanical problem, the non-linearity is mainly caused by the presence of 
cracks; for the hygric problem, it is due to the high degree of non-linearity of the material 
properties. 

Cracking is modeled using a discrete approach: strong (displacement) discontinuities are 
embedded in finite elements. In this formulation, the cracks are not restricted to the element 
boundaries; instead, they can freely run through the finite element mesh14-16. For the 
propagation of a discontinuity, a mode I stress criterion is evaluated in the element in front of 
the crack tip: if the maximal principal stress exceeds the tensile stress of the material, a new 
discontinuity is initiated perpendicular to the maximal principal stress direction.  

Cracks act as preferential pathways for the distribution of moisture in the material. A 1-D 
discrete fracture flow model is adopted to predict the water flow in the rough-walled fracture 
with variable aperture. The system is solved using a moving front technique17 and the 
capillary pressures corresponding to the calculated liquid pressure field in the crack are 
imposed as boundary condition along the matrix-fracture interface. 

The moisture distribution in the matrix is solved using a continuum approach, based on the 
conservation of mass and Darcy’s mass transfer equation18. Since the hygric material 
properties (moisture capacity and permeability) are function of the unknown capillary 
pressures, a solution can only be obtained by iteration. 

The capillary pressures in the material matrix generate additional internal stresses of which 
the magnitude can be estimated based on the elastic effective stress concept2. The mechanical 
response in the next time step is evaluated based on the mechanical loading during that time 
step on the one hand and the hygric stresses and mechanical properties, both dependent on the 
capillary pressures calculated during the previous time step on the other hand.  

A general scheme of the coupled model is given in Figure 1. 

MECHANICS MOISTURE

 
Figure 1: Coupled model for simulating unsaturated moisture transport and fracture development in quasi-brittle 

porous materials. 

3 NUMERICAL EXAMPLES 

3.1 Swelling and bending due to free uptake 
As a first problem the mechanical response of a dry beam (pc=5 109 Pa) submitted to a free 

uptake experiment is analyzed. During the uptake experiment the position of the waterfront 
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gradually approaches the top side of the sample. The height of the waterfront evolves linearly 
with square root of time. During the process the beam will bend out due to the non-uniform 
moisture saturation distribution over the height. The evolution of the vertical displacement in 
the middle of top and bottom plane of the beam is plotted as a function of square root of time 
in figure 2. The bending increases to reach a maximum value after approximately 302 
seconds, the moment the waterfront reaches half the height of the beam. Afterwards the 
displacement diminishes again. Due to the swelling of the beam with increasing saturation a 
gradually shift appears between top and bottom curve during the process.  
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Figure 2: mechanical response of an initially dry beam submitted to a free uptake experiment. 

3.2 Cracking due to free water uptake during three point bending test 
In a second simulation a dry beam (pc=5 109 Pa) is first loaded to approximately half of the 

maximal loading. From then on, the beam is exposed to a water contact at the bottom side 
while the mechanical loading process continues. Figure 3 compares the simulated load versus 
displacement curve with the response curves of the dry material and of the capillary saturated 
material. In a first step a decrease of the loading due to a decrease of the stiffness in the 
wetted part can be observed. When afterwards the force starts to increase again, soon the 
decrease of the strength in the wetted zone initiates the damage process leading to failure far 
below maximum loading. 
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Figure 3: coupled mechanical / hygric loading during bending tests. 
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4 CONCLUSIONS 
A finite element model for the analysis of moisture effects on damage processes in porous 

building materials has been presented. The model is a combination of two discrete models: a 
partition-of-unity crack model to simulate crack propagation due to poromechanical loading 
and a front tracking method embedded in a continuum model to simulate moisture transfer in 
discrete fractured media. Numerical examples of combined mechanical and moisture loading 
illustrated the possibilities of the proposed model. The numerical examples showed the 
important effect of wetting on dimensional stability, crack opening evolution and cracking 
behavior.  
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