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E. Oñate and D.R.J. Owen (Eds)
c©CIMNE, Barcelona, 2005

MODELING OF DONNAN EQUILIBRIUM IN CHARGED
POROUS MATERIALS - A SCALE TRANSITION ANALYSIS

P. Pivonka?, D. Smith†, and B. Gardiner†

?†Department of Civil and Environmental Engineering
The University of Melbourne

Parkville, Melbourne, 3010 Victoria, Australia
e-mail: ppivonka@unimelb.edu.au (corresponding author), david.smith@unimlb.edu.au,

bgardine@unimlb.edu.au, web page: http://www.civag.unimelb.edu.au

Key words: Donnan potential, anion exclusion, electro-chemical potential, charged
porous materials, volume averaging.

Summary. Knowledge of location and magnitude of charge density, together with the
pore morphology allows one to calculate the Donnan potential, characterizing ion exclusion
in charged porous materials. Use of the electro-chemical potential together with Gauss’
electrostatic theorem allows the computation of the ion and voltage distribution at the mi-
croscale. On the other hand, commonly used macroscopic counterparts of these equations
allow the estimation of the Donnan potential and ion concentration on the macroscale.
However, it turns out that the classical macroscopic equations describing phase equilibrium
do not account for the non-homogeneous distribution of ion and voltage at the microscale,
leading to inconsistencies in estimating the Donnan potential (at the macroscale) from mi-
croscale information. In this paper we derive a new generalized macroscopic equilibrium
equation by means of volume averaging of the microscale electro-chemical potential.

1 INTRODUCTION

A broad class of porous materials including clays, shales, polymer gels, and biological
tissues are characterized by positive and/or negative charge on their surfaces [2]. The
presence of surface charges leads to formation of diffuse double-layers characterized by
high surface concentrations of anion or cations depending on the sign of the surface
charge. In the case of phase equilibrium between a negatively charged porous material
and an electrolytic solution the cation concentration is higher in the porous media phase
(relative to the solution phase outside the porous material), whereas the opposite holds
for anions. This phenomenon is often referred to as anion exclusion. In the following,
we assume that the voltage difference ∆ψ across an external electrolytic solution and the
charged porous material is caused only by electrostatic effects. This voltage difference is
commonly referred to as the Donnan Potential (EDon).

The solution of the classic Poisson-Boltzmann equation describing ion and voltage dis-
tribution near charged particles (at the microscale1) shows a highly nonlinear distribution

1In the following we denote the scale where non-linearities in ion and voltage distribution are detected
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of these quantities over a distance up to a few hundreds of nanometers (the so-called Debye
length) depending on surface charge density and concentration of background electrolyte.
However, most engineering applications only deal with the investigation of macroscopic
quantities such as macroscopic concentrations and electric potentials. Macroscopic de-
vices (like ion specific electrodes and volt meters) measure these macroscopic quantities.
In this paper we address the following question: how are microscopic electro-chemical
quantities such as cation and anion concentration, voltage distribution, and fixed surface
charge density, related to the respective macroscopic (that is, measurable) quantities?

2 GOVERNING EQUATIONS

For a physical quantity e(z) assigned to the α-phase (i.e., solid or liquid) there are
two different spatial averages, namely the apparent phase average and the intrinsic phase
average, as defined by [1]

eα(x, t) =
1

V
∫

Ω(x)
χ0(z− x)χα(z, t)e(z, t) dVz (1)

eα
α(x, t) =

1

Vα

∫

Ω(x)
χ0(z− x)χα(z, t)e(z, t) dVz (2)

where V and Vα denote the total volume and the volume of the α-phase of the represen-
tative volume element (RVE) respectively. χ0 and χα are indicator functions of Ω(0) and
Ωα (see [1] for details). It follows that apparent and intrinsic phase averages are related
by:

eα(x, t) = φα eα
α, (3)

where φα = Vα/V is the phase volume fraction.

2.1 Phase Equilibrium at the Microscale

The theory of thermodynamics provides the framework for the description of equilib-
rium of ionic species in different phases [2]. In the following, we consider phase equilibrium
of ionic species between two phases. The distribution of the ions is assumed to be only
controlled by differences in concentration and electric potential between the two phases
(i.e., we neglect non-ideality and pressure effects). The electro-chemical potential of an
ionic species (in solution) then is described by [2]

µiβ = µi0β + RT ln ciβ + ziFψβ, (4)

where the index i refers to the ionic species and the index β refers to the (electro-chemical)
phase respectively. µi0β is a reference electro-chemical potential. ciβ and ψβ are the
concentration of ion i and the voltage in the solution phase β. At equilibrium by definition,

as the microscale.
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the electro-chemical potentials of the ionic species i must be the same in both phases, i.e.,
µi1 = µi2 which can also be expressed as:

∇µiβ = RT (1/ciβ)∇ciβ + ziF∇ψβ = 0 (5)

In order to complete the set of equations describing phase equilibrium at the microscale
we apply Gauss’ electrostatic theorem (also known as Poisson equation) to relate the
variation of the electric potential to the spatial distribution of the electric charges [2]:

−∇ · (ε0 εβ∇ψβ) = F
N∑

i=1

zi ciβ on Ωf , (6)

where we consider solid particles to have only surface charge. Hence, we assume that
the voltage and volume charge density is defined over the fluid phase only. ε0 is the
permittivity of free space, εβ is the relative permittivity of the fluid. F

∑N
i=1 zi ciβ is

the volume charge density of the fluid respectively. The system of simultaneous partial
differential Eqns. (5) and (6) must be solved over the domain of the RVE subject to
appropriate boundary conditions (see [3] for details).

2.2 Phase Equilibrium at the Macroscale

Application of the intrinsic phase average rule (Eqn.(2)) to the microscale electro-
chemical potential (Eqn.(4)) leads to the macroscopic equilibrium equations:

µi1
f = µi2

f

RT ln ci1
f

+ ziFψ1
f

= RT ln ci2
f

+ ziFψ2
f

= const. (7)

Now we introduce the concept of intrinsic effective concentrations, defined as,

ĉiβ
f

:= exp ( ln ciβ
f
) with ln ciβ

f
(x) =

1

Vf

∫

Ω(x)
ln (ciβ(z)) dVz = ln ĉiβ

f
(x) (8)

Eqn.(7) can be rearranged to give the generalized Donnan potential:

EDon := ψ2
f − ψ1

f
= −RT

ziF

(
ln ci2

f − ln ci1
f
)

= −RT

ziF
ln

(
ĉi2

f
/ĉi1

f
)

(9)

This equation is a generalization of the standard equation describing the Donnan poten-
tial, i.e., EDon = −(RT/ziF ) ln

(
ci2

f/ci1
f
)
. Eqn.(9) is valid for any phase equilibrium

(with uniform and non-uniform distribution of charge throughout the domain). For the
special case of homogeneous charge distribution characterized by constant (microscopic)

concentration and voltage distribution, the relation ĉi1
f

= ci1
f and ĉi2

f
= ci2

fholds. In
other words, the generalized Donnan equation reduces to the usual Donnan potential.
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The generalized Poisson equation provides a relation between electric potential and
intrinsic effective ion concentration, i.e.:

−∇(εeffβ∇ψβ
f
) = F

N∑

i=1

ziĉiβ
f

+ FωX̂β

f

(10)

where εeffβ is the effective permittivity, ĉiβ
f

are the intrinsic effective concentrations, and

X̂β

f

is an effective fixed charge concentration related to the surface charges σ on particles
of the material phase (β). Note that the RHS of Eqn.(10) differs from the standard

Poisson equation, i.e., −∇(εeffβ∇ψβ
f
) = F

∑N
i=1 ziciβ

f + FωXβ
f
. Equilibrium at the

macroscale implies electroneutrality within a material (β), and so the RHS of Eqn.(10) is

zero within the considered material, i.e.,
∑N

i=1 ziĉiβ
f

+ ωX̂β

f

= 0. With the knowledge of

the effective permittivity (εeffβ) and (intrinsic) effective fixed charge concentration (X̂β

f

),
the generalized macroscopic equations describing phase equilibrium (7) and (10) can be
solved, and macroscopic measurable voltages estimated based on the knowledge of the
microscale domain.

3 NUMERICAL ANALYSIS

In the following we investigate phase equilibrium between two compartments containing
a monovalent binary electrolyte separated by a charged clay membrane. A typical 2D
representative volume element of clay (a =150nm, b =300nm) containing six clay platelets
of 100nm length and 10nm width is shown in Figure 1 (for details on geometry and
boundary conditions see [3]). The material parameters used for the microscale numerical
analysis are: ε0 = 8.85×10−12 C2/(J m), εw = 78, F = 96500 C/mol, T = 293 K, R = 8.31
J/(K mol), σ = −0.01 C/m2 (particle surface charge), ci1 = 10 mol/m3 (concentration of
background electrolyte).

Figure 1 shows the distribution of voltage, cations, and anions. In the region around
a particle the cation concentration is as high as 66.4 mol/m3 (Figure 1(b)) whereas the
anion concentration is as low as 1.51 mol/m3 (Figure 1(c)) indicating that anions are
excluded from the porous material.

The Donnan potential of the system can be computed by volume averaging (Eqn.(1))
of the respective microscale voltage, giving EDon = 3.89mV. Edon can also be computed
using the general definition for the Donnan potential Eqn.(9) leading the same value
independent of the ion considered. On the other hand, using the standard Donnan po-
tential equation leads different values for cations and anions (EDon,+ = −5.43 mV and
EDon,− = −2.96 mV). Obtaining two different values for the Donnan potential is clearly
incorrect, as only a single value for voltage is measured.

In order to perform a macroscopic analysis the effective permittivity and fixed charged
concentration must be estimated from a microscale analysis. From the electroneutrality

condition X̂β

f

can be estimated as 3.09 mol/m3. Numerical solution of the macroscale

4



P. Pivonka, D. Smith and B. Gardiner

(a) (b) (c)

Figure 1: Distribution of (a) voltage (in V), (b) cation concentration (in mol/m3),
and (c) anion concentration (in mol/m3) (ci1 = 10 mol/m3, σ = −0.01 C/m2)

governing equations leads the same Donnan potential as obtained from the microscale

analysis. On the other hand using the standard fixed charge concentration, i.e., Xβ
f

=
3.51 mol/m3 leads a wrong value for the Donnan potential.

4 CONCLUSIONS

In this paper a new theory for estimating the (macroscopic) Donnan potential in
charged porous materials has been proposed. This theory incorporates information for a
non-homogeneous (or lumpy) charge distribution at the microscale, into the macroscale
governing equations. Comparison of the classical (macroscale) governing equations with
the one obtained from upscaling indicate differences in terms of concentration and fixed
charge concentration. In the classical equilibrium equations (intrinsic) voltage is linked to
intrinsic actual ion concentrations. On the other hand, the new generalized equilibrium
equations relates the (intrinsic) voltage to so-called (intrinsic) effective ion concentrations.
The intrinsic effective concentrations are, for ideal solutions, logarithmic volume averages
of concentrations. Regarding the Poisson equation, it turns out that the variation of the
electric potential must be related to an effective fixed charge concentration.
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