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1 INTRODUCTION 

In geotechnical problems, deformation is usually coupled with flow of pore fluids. A 
coupled finite element procedure combines the equilibrium equation and the continuity 
equation through the effective stress principle and the volumetric strain rate1. Existing 
methods for handling large deformations generally lie within the Updated-Lagrangian (UL) 
framework which may fail to furnish a solution in the case of severe mesh distortion2-5. The 
more advanced Arbitrary Lagrangian-Eulerian (ALE) method, has not yet attracted much 
attention, mainly due to its complexities. In this paper, the Updated-Lagrangian (UL) method 
and the Arbitrary Lagrangian-Eulerian (ALE) method are generalised to solve coupled 
displacement and pore pressure problems. A simple and effective mesh refinement scheme is 
described for the ALE method. The UL and ALE methods are then used to solve a classical 
consolidation problem involving large deformations. The results clearly show the advantage 
and efficiency of the ALE method for the problems studied. 

 
2 UPDATED LAGRANGIAN METHOD 

In a coupled displacement and pore water pressure analysis, the governing equations are 
derived from the principal of virtual displacements and the conservation of mass. The 
discretised governing equations can be written as 
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where U represents the nodal displacement vector, P is the nodal pore pressure vector, Kep is 
the global elastoplastic stiffness matrix, L is the coupling matrix, H is the flow matrix, Fext is 
the external force vector, Qext is the external flow vector and the superior dot denotes the first 
order derivative with respect to time. In an Updated-Lagrangian (UL) framework, all the 
variables and the state variables are known up to time t and the aim is to find the unknowns at 
time t+∆t by solving equation (1). Various time-stepping schemes exist in the literature6,7 to 
solve the nonlinear system of equations. In this study, a backward-Euler scheme with 
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Newton-Raphson iterations is used, see [7] for more details. Moreover, the Jaumann stress 
rate and an explicit integration scheme8 are used to find the stress increments for given strain 
increments. See [8-9] for more details. 
 
3 ARBITRARY LAGRANGIAN-EULERIAN METHOD 

The ALE method has been developed based on the idea of separating the material and 
mesh displacements to eliminate mesh distortion in the UL method. A common form of the 
ALE method is the operator split technique during which the analysis is performed in two 
steps: an UL step followed by an Eulerian step. In the UL step, we solve the governing 
equations to fulfill equilibrium and obtain the material displacements. In the Eulerian step, a 
new mesh is generated for the deformed domain to obtain the mesh displacements. All 
kinematic and static variables are then transferred from the distorted mesh to the new mesh. 
The key issues in the operator-split ALE method thus include the mesh optimisation in the 
Euler step and the mapping of variables between the two meshes. The latter is performed 
using a first order expansion of Taylor’s series10, which is also known as the convection 
equation in the ALE literature. In a coupled displacement-pore water pressure ALE analysis, 
the state parameters to be transformed at integration points include the effective stresses, 
hardening parameters, void ratios and permeabilities, while the pore-water pressures are 
transformed from nodes to nodes. The patch recovery technique11 is used to recover the nodal 
values from the values at integration point. The novel mesh refinement was recently 
developed by the authors [9]. To obtain the mesh displacements, we first re-discretise the 
deformed boundaries resulting from the UL step. These boundaries include the boundaries of 
the domain, the material interfaces and the loading boundaries. With known displacements of 
the nodes on these boundaries, we then perform an elastic analysis using prescribed 
displacements to obtain the optimal mesh and hence the mesh displacements for all the 
internal nodes. The method has been implemented for two-dimensional plane strain problems 
and axi-symmetric problems. However, it can easily be generalised to three-dimensional 
problems as well. An important advantage of this mesh optimisation method is its 
independence of element topology and problem dimensions. The method does not require any 
mesh generation algorithm, does not change the topology of the problem, and hence can be 
easily implemented in existing finite element codes. For more details see [9]. 
 
4 NUMERICAL EXAMPLE 

The performance of the UL and the ALE methods are compared via a rigid footing resting 
the Modified Cam Clay (MCC) soil. The consolidation settlement of the footing is studied, 
with the finite element mesh shown in Figure 1. The parameters of the MCC soil are 

3 4
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where λ is the slope of the normal compression line (NCL) in the space of the logarithmic 
mean stress lnp′ versus the void ratio e, κ is the slope of the unloading-reloading line (URL) 
in the lnp - e space, eN is the intercept of the NCL on the e axis when lnp′ = 0, OCR is the 
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over-consolidation ratio of the soil, K0 is the coefficient of earth pressure at rest, γ is the unit 
weight of the soil and k represents the permeability of the soil. A thin layer of elastic material 
is added on top of the MCC soil to prevent a slope instability problem when the settlement of 
the footing becomes very large. The elastic modulus, unit weight and Poisson’s ratio of this 
layer are assumed to be 103 (kPa), 16 (kN/m3) and 0.3, respectively. 

The analysis includes three stages. In the first stage, we use body loading of the self weight 
of the soil to generate a non-zero initial stress field and a hydrostatic pore pressure profile. 
Once the initial stresses are established, the initial yield surface locations are determined 
according to the current stresses and the OCR. In the second stage, a uniform pressure q=100 
(kPa) is applied on the footing in 100 days. Finally, the load is kept constant and the soil is 
allowed to consolidate over time. The settlement of the footing versus time is plotted in 
Figures 1b. Both the small-deformation and the UL analyses fail to furnish a solution. The 
small-deformation analysis fails at 35 days, due to the applied load being larger than the small 
strains collapse load. The UL analysis fails at 75 days, because of negative Jacobian of some 
elements resulting from mesh distortion. Only the ALE method can finish the analysis and 
predict the final settlement of the footing. The total settlement of the footing predicted by the 
ALE method is found to be 1.165 (m) occurring after 3100 days. The deformed meshes at the 
end of each analysis are shown in Figures 1c, 1d, and 1e for the small strain theory, UL 
method and ALE method respectively. 
 
5 CONCLUSIONS 

Two large deformation methods, the Updated Lagrangian and the Arbitrary-Lagrangian-
Eulerian, were generalised for coupled large deformation analysis of geomechanical problems 
in this paper. The main drawback of the UL method, mesh distortion, can effectively be 
avoided by the ALE method. The main challenges to the ALE method are the mesh 
refinement and the remapping of state variables. The mesh refinement scheme adopted in this 
study works effectively and efficiently for the problem studied. The method is not only 
independent of problem topology and dimensions, but also requires no mesh generation 
algorithm.  
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Figure 1. Consolidation of a rigid footing on MCC soil. 
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(a) Problem definition and FE mesh 

(b) Settlement versus time 
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(c) Mesh at 35 days, Small deformation (d) Mesh at 77 days, UL method (e) Mesh at 3100 days, ALE 


