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Summary. Gradient elasticity models have been proposed in recent years in order to
describe phenomena that cannot be described by classical elasticity models. In this contri-
bution, a recently developed formulation of gradient elasticity will be presented that can
be used in dynamics as well as in statics. It is an extension of the gradient elasticity
model earlier suggested by Aifantis and coworkers, and it includes a length scale as well
as a time scale. Special emphasis will be paid to the finite element implementation of the
model. In particular, the implications of the so-called Ru-Aifantis theorem on the finite
element implementation with C0-continuous shape functions will be studied.

1 INTRODUCTION

Classical elasticity models, in which the stresses depend on the strains but not on
higher-order derivatives, cease to be applicable if phenomena are to be described that
are driven by processes on lower scales of observation. For example, wave dispersion
is caused by the intrinsic inhomogeneity of any material but cannot be predicted by
classical elasticity. Also the size-dependent mechanical properties of specimens are not
reproduced by classical elasticity. Furthermore, in classical elasticity singularities in the
stress and strain field may occur at the tips of a sharp crack, which are not realistic. In all
these instances, gradient elasticity has been proven to be a viable alternative to classical
elasticity. In its simplest format, the constitutive equation of gradient elasticity reads [1]

σ = D
(
ε− `2∇2ε

)
(1)

where σ and ε are the Cauchy stress and the infinitesimal strain, D contains the usual
elastic stiffness moduli, and ` is an additional parameter with the dimension of length.
This intrinsic length scale may be thought of as a representative size of the underlying
microstructure.

2 DYNAMICS — LENGTH SCALES AND TIME SCALES

Whereas Eq. (1) is suitable to avoid singularities in the strain field [1] and to describe
size effects [4], for a realistic description of dispersive waves an extended format of gradient
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elasticity is needed. In [2, 3] a gradient elasticity model has been derived from a discrete
lattice, whereby not only higher-order stiffness terms but also higher-order inertia terms
are included:

σ = D
(
ε− `2∇2ε + τ 2ε̈

)
(2)

The higher-order inertia term is accompanied by an intrinsic time scale τ that sets the
propagation characteristics of the high-frequency waves. The inclusion of higher-order
inertia is crucial for a realistic description of wave dispersion.

3 IMPLEMENTATION — THE RU-AIFANTIS THEOREM

A disadvantage of gradient elasticity is that it requires a C1-continuous interpolation,
since fourth-order displacement derivatives appear in the governing equations. However,
it has been suggested in [1] that the original equations of gradient elasticity (1) enable an
operator split. In particular, the following set of equations can be used as an alternative
to the original equations: {

LT DLuc = 0
ug − `2∇2ug = uc

(3)

where uc and ug are the displacements according to classical elasticity and gradient elas-
ticity, respectively. The two separate sets in Equation (3) each only require C0-continuity,
which constitutes a huge advantage. The influence of the boundary conditions (cf. [5])
and the extension towards the dynamics equation (2) will be addressed.

REFERENCES

[1] C.Q. Ru and E.C. Aifantis. A simple approach to solve boundary-value problems in
gradient elasticity. Acta Mech., 101, 59–68, 1993.

[2] A. Metrikine and H. Askes. One-dimensional dynamically consistent gradient elastic-
ity models derived from a discrete microstructure. Part 1: Generic formulation. Eur.
J. Mech. A/Solids. 21, 555–572, 2002

[3] H. Askes and A. Metrikine. One-dimensional dynamically consistent gradient elas-
ticity models derived from a discrete microstructure. Part 2: Static and dynamic
response. Eur. J. Mech. A/Solids. 21, 573–588, 2002.

[4] H. Askes and E.C. Aifantis. Numerical modeling of size effects with gradient elasticity
— Formulation, meshless discretization and examples. Int. J. Fracture, 117, 347–358,
2002.

[5] L.T. Tenek and E.C. Aifantis. A two-dimensional finite element implementation of a
special form of gradient elasticity. Comp. Modeling in Eng. Sci., 3, 731–741, 2002.

2


