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Summary. In this contribution we present a thermomechanical 3D model for SMA based

on the concept of Helm & Haupt1 which includes the effect of pseudoelasticity as well as

the shape memory effect and the external two way effect. This model has been extended

to large deformations and has been implemented into a FE code by using an implicit

integration scheme. Additionally, we consider the aspect of mechanical fatigue of SMA

under cyclic loading by introducing a damage function in the material model.

1 INTRODUCTION

Shape memory alloys (SMA) can undergo phase transformation between a high-ordered
austenite phase and a low-ordered martensite phase, as a result of changes in the tempera-
ture and the state of stress. Consequently, SMA exhibits several macroscopic phenomena
not present in traditional materials. Two significant phenomena are the shape memory
effect (SME) and the pseudoelasticity (PE). These unique features of SMA have found
numerous applications in the mechanical, automotive, aerospace, electronic industries as
well as in the medical field. The increasing use in commercially valuable applications
have motivated a vivid interest in the development of accurate constitutive models to
describe the thermomechanincal behaviour of SMA. The recent state of the art regarding
the behaviour, the modelling and the applications of SMA is documented in the book
of Auricchio2 from 2001. However, model formulations which are capable to describe
the various effects of SMA in a three-dimensional finite deformation framework are still
lacking.

2 CONTINUUM MECHANICAL MODEL

As already mentioned, the proposed model is based in general on the concept of Helm

& Haupt1. It is built upon a phenomenological model formulation for elastoplasticity.
Its performance in combination with the FE method has been already investigated by
Christ & Reese3 for the case of small deformations. To reinforce the knowledge on the
based model we refer to the above mentioned contributions1,3. At the beginning we
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introduce the deformation gradient F which can be decomposed into an elastic part and
a transformation part (F = Fe Ft) as it is applied in the classical crystal plasticity, too.
Additionally the deformation gradient exhibiting the phase transformation Ft is split
as well into an elastic part and a dissipative part (Ft = Fte Ftd). A second step is to
introduce the elastic symmetric Cauchy-Green tensors Ce = FT

e Fe = F−T
t CF−1

t and
Cte = FT

te
Fte = F−T

td
Ct F

−1
td

. The total Helmholtz free energy Ψ consists also of an elastic
and a transformation part Ψ = Ψe (Ce, z) + Ψt (Cte), whereas the elastic part depends
on Ce and the martensitic volume fraction z and the transformation part only on Cte .
In order to derive the model in a thermodynamic frame we have to fulfil the second law
of thermodynamics by means of the Clausius-Duhem inequality −Ψ̇ + 1

2
S · Ċ ≥ 0 which

leads to

−
∂Ψe

∂Ce

· Ċe −
∂Ψe

∂z
ż −

∂Ψt

∂Cte

· Ċte + S ·
1

2
Ċ ≥ 0. (1)

The martensitic volume fraction z can be defined in dependence of the transformation
strains, z = ||Et||/β, where Et := 1

2
(Ct−1) is the Green-Lagrange strain and β a material

parameter describing the width of the hysteresis (see Fig. 1). By using this expression
for z the rates appearing in (1) can be expressed by

ż =
1

β

Et

||Et||
·
1

2
Ċt = (

1

β
Ft

Et

||Et||
FT

t ) · dt

Ċe = −lt Ce + F−T
t ĊF−1

t − Ce lt (2)

Ċte = −ltd Cte + F−T
td

Ċt F
−1
td

− Cte ltd ,

where the deformation rate tensor dt is defined by dt := 1
2
F−T

t Ċt F
−1
t and the known

definitions lt := Ḟt F
−1
t and ltd := Ḟtd F−1

td
are introduced. By considering further tensor

calculations and the symmetry of ∂Ψe/∂Ce and ∂Ψt/∂Cte , equation (1) can be redefined
as

(M − 2F−T
t CF−1

t

∂Ψe

∂Ce

) ·
1

2
Ċ + (M−Xt − Xz

︸ ︷︷ ︸

−X

) · dt + Mt · dtd ≥ 0. (3)

Here, we have introduced the so-called Mandel stress tensors M, Mt and the back
stresses Xt and Xz

M := 2Ce

∂Ψe

∂Ce

and Mt := 2Cte

∂Ψt

∂Cte

, (4)

Xt := 2Fte

∂Ψt

∂Cte

FT
te

and Xz :=
∆Ψ

β
Ft

Et

||Et||
FT

t . (5)

The Mandel stress tensors are symmetric if we assume that Ψe and Ψt are isotropic
functions of the right Cauchy-Green tensors Ce and Cte , respectively. The back stress
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Xz originates from the introduction of the volumetric martensite fraction z and depends
via the energy difference between the austenitic and martensitic phase ∆Ψ = ∆Ψ̂(θ) on
the temperature. Physically, Xz can be interpreted as the middle stress plateau of the
hysteresis rising its level by increasing temperature (see Fig. 1). The finally developed
Clausius-Duhem inequality (3) is sufficiently satisfied by the relations

dt = λ̇
MD − XD

||MD − XD||
=

∂Φsma

∂M
(6)

dtp = λ̇
b

µt

MD
t

for the evolution equations dt and dtd , respectively. The phase transformation function
Φsma is given in the continuum mechanical context via

Φsma = ||(M − Xi − Xz)
D|| − k. (7)

The superscript ”D” characterizes the deviator of a tensor and k is a material param-
eter describing the half height of the hysteresis (Fig. 1). As we use a von Mises-type
phase transformation function, k can be equated with isotropic hardening in classical
elastoplasticity. Further the Kuhn-Tucker conditions λ̇ ≥ 0, Φsma ≤ 0 and λ̇ Φsma = 0
have to be fulfilled. Up to this point the main considerations of the material model are
stated but the authors want to refer to Reese & Christ4 for a more detailed derivation
of the present model and its integration algorithm for the implementation into the finite
element method.

3 FATIGUE BEHAVIOUR

It is already known that the phase transformation in shape memory alloys is strongly
influenced by cyclic loading. In repeated load cycles the stress plateaus decrease and
residual stains increase (Fig. 2). Wagner 5 has investigated the behaviour of a NiTi wire
under cyclic loading. He found out that the just described fatigue behaviour can be
realistically modelled by means of an exponential function, given as

Ω(N) = m1 + m2 e−m N with Ω = σAM, σMA or εres, (8)

where m, m1 and m2 are additional material parameters. Fig. 3 shows exemplarily the
values of the phase transformation stress σAM (from (A)ustenite to (M)artensite) against
the number of cycles at different maximum strains (2-6 %). The curve progression of
the exponential function (solid line) is very close to the experimentally measured values.
Similarly, σMA and εres can be fitted, too. Inserting these functions into the model and
adjusting the material parameters correspondingly, the numerical results are in a very
good accordance with the experimental tests (Fig. 4).
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Figure 1: Typical stress-strain hysteresis in
pseudoelasticity. Definition of the different
stress contributions

Figure 2: Experimental results for a cyclic ten-
sion test after 1, 5 and 20 cycles

Figure 3: Decreasing of the stress plateau (A
→ M) at different maximal strains
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Figure 4: Numerical results of a cyclic loading
up to 20 cycles
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