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1 INTRODUCTION 

The embedded discontinuity approximation in the finite element method has proved to be a 
useful methodology for the numerical analysis of the cracking process in solids. In this 
methodology the elements crossed by discontinuities use an enhanced displacement 
approximation to simulate the presence of discontinuities. Three types of approximations for 
embedded discontinuities can be identified: Discrete Approximation (D. A.), Continuum 
Approximation with Strong Discontinuities and Continuum Approximation with Weak 
Discontinuities (C. A. W. D.). This paper focuses on the first and third approximations. 

The numerical implementation of these approximations is done by completing the 
following three steps: (1) implementation of the stiffness matrix, which is formulated from the 
equilibrium equations at the body and at the discontinuity, (2) implementation of the 
constitutive model, and (3) implementation of the discontinuity tracking routine.  

2 STIFFNESS MATRIX 

Consider a solid and homogenous body whose material points are labeled by the global 
coordinate system, x. The body has a domain, Ω, and a boundary, Γ. A discontinuity (e.g. 
crack) is introduced in the body for the D. A. and a strain localization zone (e.g. cracking 
band) is introduced in the body for the C. A. W. D., as illustrated in figure 1. 

The displacement field u(x) is a function of the displacement jump [[u]](x) and is defined 
as: 

D.A.                            u(x) = û(x) + MS(x) [[u]](x) (1)

C.A.W.D.                    u(x) = û(x) + MK(x) [[u]](x) (2)
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where û(x) is the regular displacement, MS(x) is a function defined as: MS(x)= HS(x)-ϕh(x), 
MK(x) is a function defined as: MK(x)= HK(x)-ϕh(x), HS(x) is a step function, HK(x) is a ramp 
function, ϕh(x) is a continuous function that satisfies: ϕh(x)=0 ∀x∈Ω- and ϕh(x)=1 ∀x∈Ω+. 
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(a) Discrete Approximation (D. A.)    (b) Continuum approximation with Weak Discontinuities (C. A. W. D.) 

Figure 1:  Body with a discontinuity 

The displacement field u(x) can be also defined as: 
D.A.                            u(x) = ū(x) + HS(x) [[u]](x) (3)

C.A.W.D.                    u(x) = ū(x) + HK(x) [[u]](x) (4)

where ū(x) is the “continuous” displacement, which is defined as: 
ū(x) = û(x) - ϕh(x) [[u]](x) (5)

In both approximations, the application of the Principal of Virtual Work to a body with a 
discontinuity leads to an equation associated to the global equilibrium of the body: 

∫ Ω dδû : σ  dΩ = ∫ Ω δû · b  dΩ + ∫ Γ δû · T*  dΓ 
(6)

where σ is the stress tensor, b are the body forces and T* are the prescribed tractions on the 
surface. 

In the numerical implementation of Embedded Discontinuities in the Finite Element 
Method, the approximations of the regular displacements, ûe, and the “continuous” 
displacements, ūe, are defined as: 

ûe = N ûi 
(7)

ūe = N ūi = N ûi – N Φ [[u]]x,y (8)

where N are the standard shape functions; ûi and ūi are the regular and “continuous” 
displacement vectors; [[u]]x,y is the displacement jump in the global coordinate system; Φ is a 
matrix that depends on the relative location of the nodes with respect to the discontinuity1. 

The finite element equilibrium equations are obtained from (6). The stiffness matrix is 
obtained from the first term in (6), which is a function of the stress tensor, σ, that is calculated 
as: σ=D ε (D is the constitutive matrix and ε is the strain vector); the strain is calculated as 
ε=B ūi in the continuous part, so an equation that relates ūi and ûi is required as ûi is the 
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independent variable. The required equation can be obtained form the traction equilibrium 
equation at the discontinuity (D. A.) or at the strain localization border (C. A. W. D.); in 
particular, an equation that relates the displacement jump and the “continuous” displacement 
can be obtained from the equilibrium of tractions at the discontinuity1: 

D.A.                                  [[ u& ]]n,t = [Dd]-1nTDeB iu&  (9)

C.A.W.D.               [[ u& ]]x,y = [
k
1 nTDwdne]-1nT(De-Dwd) B iu&  

(10)

where [[u]]n,t is the displacement jump in the local coordinate system; k is the strain 
localization zone width; nT is the stress transformation matrix; ne is a matrix associated to the 
strains; De, Dd y Dwd are the constitutive matrices of the continuous part, the discontinuity and 
the strain localization zone, respectively; the dot above the variable means time derivative. 

The required equation that relates ūi and ûi or ∇ūi and ∇ ûi is obtained from the algebraic 
manipulation of (8), (9) and (10). This equation can be substituted in (6) in order to establish 
the equilibrium equation and the stiffness matrix in terms of ûi. Several sets of equations that 
relate ūi and ûi or ∇ūi and ∇ ûi can be found; each has numerical advantages and drawbacks1, 
however, all come from the same equations.  

The stiffness matrix is non-symmetric and its numerical implementation can be carried out 
by modifying the constitutive matrix or the stiffness matrix. In both cases the standard 
constitutive and the stiffness matrix should be calculated and then multiplied by a matrix that 
introduces the effect of the discontinuity. 

3 CONSTITUTIVE MODEL 
Two constitutive models must be established for the analysis of bodies with 

discontinuities: one for the continuous part and another for the discontinuity. A lineal elastic 
model is commonly used for the continuous part of the body and a non-linear model is used 
for the discontinuity.  

The differences between both types of discontinuity approximations are emphasized when 
the constitutive model is defined. In the D. A. a constitutive matrix of dimension two is 
defined, which relates the displacement jump, [[u]], and the traction at the discontinuity, T. In 
the C. A. W. D. a constitutive matrix of dimension three is defined, which relates the strain, ε, 
and the stress, σ, at the strain localization zone. Fernández and Ayala2 developed damage 
models for both types of approximations, which can be equivalent given the fulfillment of a 
two equations. Figure 2 illustrates the failure surfaces for both models, which are defined for 
the conditions [[u]]n≥0 and [[ε]]nn≥0 due to physical consistency (a crack can only be closed 
or open); [[ε]] is the strain jump. The evaluation of the constitutive equation requires the 
resolution of a non-linear equation to obtain the value of [[u]] which satisfies the equilibrium 
at the discontinuity. 
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(a) Discrete Approximation (D. A.)   (b) Continuum Approximation with Weak Discontinuities (C. A. W. D.) 

Figure 2:  Failure surface of the constitutive model 

4 DISCONTINUITY TRACKING 

The discontinuity tracking is an important part of the numerical implementation because 
the Φ matrix from (8) is defined by the relative position of the nodes with respect to the 
discontinuity. The discontinuity in the body is numerically approximated by continuous lineal 
segments; the failure criterion used defines the orientation of each segment. 

The tracking can be carried out based on a local or a global criterion. In the local criterion, 
the orientation is calculated using the information given by the corresponding element; this 
criterion is easy to implement, but can introduce a misalignment of the discontinuity due to 
the spurious strains1. The spurious strains are those that an adjacent element produces and 
which are not consistent with the kinematics of discontinuities. In the global criterion3, the 
orientation is calculated using the information given by a group of elements; this criterion can 
minimize the effects of these spurious strains. 

5 CONCLUSIONS 

The main differences and similarities of the Discrete Approximation and the Continuum 
Approximation with Weak Discontinuities are presented. The numerical simulation of the 
fracture process of a body using these two approximations can yield to the same result, given 
the use of suitable constitutive models.  
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