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Summary. A new method for the evaluation of the elastoplastic algorithmic tangent
stiffness is presented. The formula is based on a simple geometric argument and does
not involve matrix inversions. For regular yield surfaces we provide an explicit expression
which is sufficiently approximate and computationally efficient and exact for homothetic
yield surfaces such as in von Mises plasticity criterion.

1 Introduction

The elastoplastic tangent stiffness is the linear operator which provides the stress rate
corresponding to a prescribed strain rate. In computational mechanics, according to a
fully implicit time integration scheme, the plastic flow rule is imposed in a time step by
assuming that the plastic strain increment is normal to the final value of the stress state.
The finite step flow rule is formulated by considering a purely elastic stress response to a
given strain increment (the trial stress) and by performing the projection, in complemen-
tary energy, onto the convex elastic domain to get the right stress state. Accordingly the
elastoplastic tangent stiffness must be reformulated as a consistent (algorithmic) tangent
stiffness [1] which differs from the rate tangent stiffness if the trial stress is located out-
side the elastic locus and the yield surface is not flat. In geometric terms the algorithmic
elastoplastic tangent stiffness is the composition between the derivative of the nonlinear
projector on the convex elastic domain and the elastic stiffness. The evaluation of the
derivative of the projector provides a new way to compute the algorithmic elastoplastic
stiffness. A more important observation can be deduced by considering the hypersurface
parallel to the boundary of the elastic domain and passing thru the trial stress point. The
derivative of the nonlinear projector can then be expressed as the difference between the
linear projector on the hyperplane tangent at the trial stress point and the shape operator
of the parallel hypersurface thru the trial stress point times the distance between the trial
stress and the projected stress. This simple expression provides a direct motivation why
the algorithmic elastoplastic tangent stiffness is smaller then the elastoplastic tangent
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stiffness for nonflat yield surfaces (thus leading to a quadratic asymptotic convergence
rate) and suggests a convenient way to avoid the matrix inversion operation usually in-
volved in the computation of the algorithmic stiffness (see e.g. [2]). The trick consists
in the substitution of the parallel hypersurface with the corresponding level set of the
yield function (the one passing thru the trial stress point). This substitution provides
the exact expression of the algorithmic stiffness when the level sets of the yield function
form a family of homothetic surfaces (e.g. in von Mises plasticity criterion) and a simple
useful approximation in the general case. Numerical examples have provided evidence of
the advantages of the new estimate of the algorithmic stiffness.

2 Algorithmic tangent stiffness

Let us consider an elastoplastic problem characterized by a convex elastic domain K
in the stress space S and a finite step evolution problem in which the flow rule is imposed
according to a fully implicit integration scheme. We denote by SC and DE the stress
space and the strain space, respectively endowed with the inner products induced by the
complementary elastic energy norm and the elastic energy norm. Let ε0 , p0 and σ0 be
the total, the plastic strain and total stress at the beginning of the step, and ε , p and σ
the corresponding strains and stresses at the end of the step. The constitutive equations
are written as {

E ε = σ + Ep ,

p− p0 ∈ NK(σ) ,

where NK(σ) is the normal cone at σ ∈ K in S .
An alternative form can be given in terms of the finite increments

∆ε = ε− ε0 , ∆p = p− p0 , ∆σ = σ − σ0 ,

by setting {
E∆ε = ∆σ + E∆p ,

∆p ∈ NK(σ) ,
⇐⇒

{
σ0 + E∆ε = σ + E∆p ,

E∆p ∈ NC
K(σ) ,

where NC
K(σ) is the normal cone at σ ∈ K in SC . Denoting by PK the orthogonal

projector in SC onto K the constitutive relation may be written as

σ0 + E∆ε = σ + E∆p , σ = PK (σtr) ,

where σtr := σo + E∆ε , and the finite step elasto-plastic constitutive problem may be
formulated as:

σ = PK(σtr) ⇐⇒


∆p = λ dϕ(σ)

C∆σ = ∆ε−∆p

λ ≥ 0 ϕ(σ) ≤ 0 λ ϕ(σ) = 0 .
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Under plastic loading, i.e. when ϕ(σ) = 0 we may write

σ = PK(σtr) ⇐⇒

{
Cσ + λ dϕ(σ) = Cσtr , λ ≥ 0

ϕ(σ) = 0 .

The classical procedure for the evaluation of the algorithmic tangent stiffness consists in
taking the time derivatives of the previous relation to get ṗ = λ̇ dϕ(σ) + λ d2ϕ(σ) σ̇ =
ε̇−C σ̇ . Setting H := [C+ λ d2ϕ(σ)]−1 and imposing that the stress point moves along
the boundary of the elastic domain we find the expression of plastic multiplier rate:

σ̇ ∈ T ∂K(σ) ⇐⇒ 〈σ̇, dϕ(σ)〉 = 0 =⇒ λ̇ =
〈H ε̇, dϕ(σ)〉

〈H dϕ(σ), dϕ(σ)〉
.

Adopting the notations NH := H dϕ(σ) and β := 〈H dϕ(σ), dϕ(σ)〉 the algorithmic
tangent stiffness is then given by

σ̇ =
(
H−

NH ⊗NH

β

)
ε̇

This expression requires a matrix inversion for the evaluation of H . We provide here
an alternative expression, which avoids matrix inversions, by a direct computation of the
derivative of the projector operator, according to the formula

σ̇ = ∂PK
(
σtr

)
E ε̇ .

To this end we write σtr = PK(σtr) + r n(σtr) where r := ‖∆p ‖ and n(σtr) is the
outward normal at the point σtr ∈ Kr . The expanded elastic domain Kr is obtained
by moving in the outward direction the boundary ∂K of the convex elastic domain K
along the vector field r n . Differentiating the previous formula along a tangent vector
h ∈ T ∂Kr (σtr) we get

h = ∂hPK(σtr) + r S(σtr)h ∀h ∈ T ∂Kr (σtr) ,

where S(σtr) := dn(σtr) is the shape operator of ∂Kr at the point σtr . Denoting by
Π the linear orthogonal projector in SE onto T ∂Kr (σtr) , the derivative of the projector
PK may be written as

∂PK(σtr) = Π(σtr)− r S(σtr) .

The shape operator S is a symmetric and positive by virtue of the convexity of the domain
Kr . We provide hereafter an approximate explicit expression of the shape operator S
for an yield locus described by a single regular yield surface. The trick consists in the
substitution of the parallel hypersurface ∂Kr with the corresponding level set of the yield
function (the one passing thru the trial stress point). This substitution provides the
exact expression of the algorithmic stiffness when the level sets of the yield function form
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a family of homothetic surfaces (e.g. in von Mises plasticity criterion) and a simple useful
approximation in the general case. Denoting by ‖ · ‖C the norm in SC , we consider
the case when the convex elastic domain is characterized as the zero level set of a convex
potential ϕ ∈ Ck(SC ; R) , i.e.

Kr := {σtr ∈ SC | ϕ(σtr) ≤ 0 } ,

with boundary given by ∂Kr = {σtr ∈ SC | ϕ(σtr) = 0 } . The gradient ∇ϕ ∈
C(k−1)(SC ; SC) of ϕ in the space SC is defined by

〈dϕ(σtr), σ̇tr 〉 = 〈C∇ϕ(σtr), σ̇tr 〉 ⇐⇒ ∇ϕ(σtr) = E dϕ(σtr) ,

〈d2ϕ(σtr)τ̇ , σ̇tr 〉= 〈d(C∇ϕ(σtr))τ̇ , σ̇tr 〉 = 〈C d(∇ϕ(σtr))τ̇ , σ̇tr 〉

= 〈C∇2ϕ(σtr)τ̇ , σ̇tr 〉 ⇐⇒ ∇2ϕ(σtr) = E d2ϕ(σtr) ,

where dϕ(σtr) ∈ D = L(S ; R) and 〈·, ·〉 is the duality between D and S . The outward
normal versor at σtr ∈ ∂K is then given by

nϕ(σtr) =
∇ϕ(σtr)

‖∇ϕ(σtr) ‖C

∈ SC .

The directional derivative of the normal versor nϕ(σtr) along directions Π(σtr) σ̇tr

tangent to K at σtr can be evaluated by a simple computation:

dnϕ ·Π σ̇tr =

(
∇2ϕ ·Π σ̇tr

‖∇ϕ ‖C

− 〈∇ϕ,∇2ϕ(σtr) ·Π σ̇tr 〉
‖∇ϕ ‖3

C

∇ϕ

)

=
1

‖∇ϕ(σtr) ‖C

(
I− nϕ(σtr)⊗ nϕ(σtr)

)
∇2ϕ(σtr) ·Π(σtr) σ̇tr

=
1

‖∇ϕ(σtr) ‖C

Π(σtr)∇2ϕ(σtr)Π(σtr) σ̇tr .

The approximate expression of the shape operator S of the surface ∂Kr is then given by

S(σtr) = dnϕ(σtr) ·Π(σtr) =
1

‖∇ϕ(σtr) ‖C

Π(σtr)∇2ϕ(σtr)Π(σtr) .

REFERENCES

[1] J.C. Simo and R.L. Taylor. Consistent tangent operators for rate-independent elasto-
plasticity, Comp. Meth. Appl. Mech. Engrg., 48, 101-118, 1985.

[2] V. Palazzo, L. Rosati, N. Valoroso. Solution procedures for J3 plasticity and vis-
coplasticity, Comp. Meth. Appl. Mech. Engrg., 191, 903-939, 2001.

4


