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Summary. A simple framework is presented to model the mechanical behaviour of
natural clays under general loading conditions, including non-monotonic loading. Trans-
formation of the isotropic model to accommodate anisotropic hardening involves simple
modifications to the flow rule and plastic modulus.

1 INTRODUCTION

The constitutive modelling of anisotropic geomaterials is a particularly active area
of ongoing research, and there are many different approaches even within the confines
of elastoplasticity. Our objective here is to present a material-point model capable of
describing the rate-independent mechanical behaviour of clays in general and of sensi-
tive, over-consolidated, and natural clays in particular, under completely general loading
conditions, including non-monotonic (e.g. seismic) loading, and cases where the princi-
pal loading axes may not coincide with the material’s inherent axes of anisotropy. The
modelling system is presented in simple yet general terms, motivated by the need for a
clear conceptual framework within which to assess the suitability of the various options
for modelling anisotropic hardening and destructuration processes. Subloading plasticity
has been shown to have significant advantages, particularly in its ability to capture the
softening behaviour of real soils1; and the failure surfaces predicted are similar to the
empirically derived yield surfaces of the more conventional cap- or Hvorslev-type mod-
els. In contrast to some other approaches, subloading plasticity actually leads to simpler,
more regular model equations. The decomposition of the yield function into intensity
and strength functions presented here allows for a variation of the dilatancy response in
sub-limit yielding. Transformation of the isotropic model to accommodate anisotropic
(translational and rotational kinematic) hardening involves simple modifications to the
flow rule and plastic modulus.

2 STATE

Let the state of our isothermal thermodynamic system be defined by three intensive
symmetric second-order tensors: the effective stress σ , the fabric stress ζ , and the
backstress α. The fabric pressure pζ and the fabric stress ratio β are defined such that
pζ(β−ι) = ζ and β : ι = 0, where ι is isotropic and det[ι] = 1. Suppose that S = {σ, ζ,α}
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describes the state of an elastoplastic system (S, F ), where F is a scalar function of state
identified as the normal yield function. We consider functions of the form

F (σ,α, ζ) = f( ˜̄σ, pζ) (1)

for some equivalent isotropic normal yield function f , where ˜̄σ = Iβ : σ̄, σ̄ = σ − α,
Iβ = I + 1

3
β⊗ ι and I is the fourth-order identity tensor. The contours of F in principal

stress space are obtained from those of f by ’rotating’ the hydrostatic axis so that the
point −pζι maps onto ζ, and then shifting the stress origin to α.

3 ISOTROPIC SYSTEM

Here we present the constitutive rate equations for an arbitrary isotropic elastoplastic
system for which α ≡ 0 ≡ β. The normal yield function is decomposed into two parts:

f(σ, pζ) = f1(σ, pζ)− f2(σ, pζ) (2)

where f1 ≥ 0 and f2 ≥ 0 are the intensity and strength functions respectively. This
is a generalization of the form presented by Hashiguchi et al.1, where f1 = f1(σ) and
f2 = f2(pζ). The normal yield ratio and the yield function itself are defined as

R(σ, pζ) ≡ f1/f2, Y (σ, pζ) ≡ f1 −Rf2 (3)

Note that the yield function is identically zero. In the limit state (R = 1) Y is identical
to the normal yield function f . For a given strain rate ε̇ the evolution rules are:

σ̇ = E : (ε̇− γ̇m), ṗζ = γ̇hp, γ̇ 6= 0 ⇒ Ṙ = γ̇hR (4)

where E is the elastic modulus, m is the flow direction tensor, hR is the subloading
function, hp is the isotropic hardening function, and γ̇ is the consistency parameter. It is
assumed that hR satisfies the conditions sgnhR = sgn(1−R), limR→0 hR = ∞
The differential operator n and the plastic modulus H are defined such that

γ̇ 6= 0 ⇒ Ẏ = n : σ̇−Hγ̇ (5)

It follows from the consistency condition (Ẏ = 0) and the loading criterion (n : E : ε̇ ≤
0 ⇒ γ̇ = 0) that γ̇ = γ : ε̇ and

γ =





0 if n : E : ε̇ ≤ 0
n : E

H + n : E : m
otherwise

(6)

n = no(σ, pζ) ≡ ∂f

∂σ
+ (1−R)

∂f2

∂σ
(7)
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H = HI(σ, pζ) ≡ f2hR −
[
R

∂f

∂pζ

+ (1−R)
∂f1

∂pζ

]
hp (8)

Purely elastic behaviour is obtained when R = 0. The stress rate may be written:

σ̇ = E : (I−m⊗ γ) : ε̇ (9)

Our interpretation is slightly different from the traditional one since n is in general not
equal to the stress-gradient of the normal yield function: equality holds either when the
strength function f2 is independent of σ, or in the limit state (R = 1). This gives a flow
rule that would normally be considered non-associative while preserving the symmetry of
the elastoplastic modulus.

4 ANISOTROPY AND STRUCTURE

Rotational (kinematic) and (translational) kinematic hardening are incorporated by
writing the yield function in terms of ˜̄σ. The consistency condition then implies

n = no( ˜̄σ, pζ) : Iβ, H = HI( ˜̄σ, pζ) + n : (p̄hβ + hα) (10)

where p̄ = −1
3
σ̄ : ι, and hβ and hα are material state functions defining the rotational

and kinematic hardening rules:

β̇ = γ̇hβ, hβ : ι = 0; α̇ = γ̇hα (11)

Equations (6-9) then apply as for the isotropic case. The destructuration process is in-
corporated most simply by introducing the sensitivity r ≥ 1 as an additional independent
internal intensive scalar variable and supposing that changes in r affect only the material
strength. This is achieved via the following transformation:

pζ 7→ rpζ , hp 7→ rhp − hrpζ , ṙ = −γ̇hr (12)

where hr ≥ 0 controls the degradation of r, and limr→1 hr = 0. More realistic would
be to suppose for example that r also affects the stiffness, via E, and the capacity for
anisotropy, via hβ.

5 APPLICATION

The fact that the elastic centre is associated with the point of zero intensity (R = 0)
motivates the following decomposition of the modified Cam clay yield function:

f1(σ, pζ) = q2/M2 + (p− ρ)2, f2(σ, pζ) = p(pζ − 2ρ) + ρ2 (13)

where p = −1
3
σ : ι, q ≡ ∓

√
3
2
‖ σ′ ‖, σ′ = σ + pι, M is the critical stress ratio, and ρ is

the pressure at the elastic centre. Two natural choices are ρ = 0 1 and ρ = 1
2
p 2

ζ . The flow
rule for the anisotropic system is obtained by substituting (13) into (10) a:
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n̄ =
3

M2
˜̄σ
′ −

[
2

3
(p̄− pδ)−

˜̄σ
′
: β

M2

]
ι (14)

where pδ = 1
2
Rpζ + ρ(1−R) and M = M( ˜̄σ) and R = R( ˜̄σ, pζ). The effect of subloading

with hR = −u ln(R/Ro)‖m‖ is shown in Fig 1 where Ro = 0.1 is the size of the normal
yield surface (i.e. the bubble) divided by the size of the bounding surface.
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Figure 1: Effect of subloading on the kinematic hardening model.

6 CONCLUSIONS

A simple system is presented for the smooth elastoplastic modelling of natural clay, in
which the effects of anisotropy and destructuration are easily incorporated by modifying
the flow rule and plastic modulus of an equivalent isotropic system. A shift stress has been
introduced into the decomposition of the yield function, allowing a degree of control over
the dilatancy response in the sub-limit state without altering the limit-state response or
the shape of the normal yield surface. The validity of this approach has been demonstrated
by reproducing the results of some simple tests, which will be presented at the conference.
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