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Summary. The entire process of ductile failure is modelled, from the initiation
of damage to crack propagation. The microscopic material degradation mechanisms
which trigger cracks are modelled by a softening elastoplastic behaviour. Mesh objec-
tivity is ensured by a gradient enhancement. The two governing partial differential
equations, i.e. equilibrium and a nonlocal averaging equation, are solved in a stag-
gered manner, which renders a relatively simple implementation in existing finite
element codes. Adaptive remeshing fulfils a threefold purpose: (i) allowing to model
the geometry of discrete cracks; (ii) optimising the use of finite elements, so that
finer elements are used in the regions of high strain localisation; (iii) preventing
large element distortions. A number of metal forming simulations are shown which
illustrate the main model features.

1 Introduction

In the design of blanking and other metal forming processes, it is not only im-
portant to predict when and where cracks will originate, but also their trajectories,
since these trajectories determine the shape of the final products. Optimising this
shape may allow to eliminate subsequent processing steps and may thus result in
considerable savings.

The microscopic processes which are responsible for fracture can be modelled in
the form of material softening, as in continuum damage mechanics or softening plas-
ticity. In a finite element context, strongly mesh dependent results can be avoided by
using regularising techniques. Among them, gradient models enjoy great popularity
[1, 2].

When the material fails, new free surface is created and a continuous solution
can no longer be used. To model discrete cracks different numerical methods can be
used, e.g. remeshing, Partition of Unity Methods or element erosion. Remeshing has
the advantage that besides tracing crack paths, it can also be used to keep the mesh
well shaped, which is important in a large strain framework. Remeshing enables
to optimise the use of finite elements in the mesh adaptively. Mesh adaptivity is
desirable in combination with softening materials, since these tend to show highly
localised deformations in relatively small narrow regions, in which a high element
density is desired.
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In this work a combined continuous softening – discontinuous crack model is
presented. A gradient enhancement in the form of [2] is used, which introduces a
length scale. A staggered computational approach is used, which circumvents the
solution of the coupled problem (equilibrium plus nonlocal averaging), thus rendering
its implementation together with existing elastoplastic models more straightforward.

2 Gradient enhanced damage coupled with elastoplasticity

Ductile damage is introduced using the notion of effective stress, which results in
the degradation of the yield stress according to

f (σ, εp, ωp) ≡ σeq − (1 − ωp)[σy(εp)] ≤ 1 (1)

and of the elastic constants. ωp is a damage variable (0 ≤ ωp ≤ 1), f denotes the
yield function, σeq the equivalent von Mises stress and σy(εp) the undamaged yield
stress as a function of the equivalent plastic strain.

This concept can be applied to any plasticity framework. Here, an existing hypoe-
lastoplastic model of a commercial software, MSC.MARC, is used, which allows to
take full advantage of features which are needed for forming processes, e.g. contact.

Strongly mesh dependent results are avoided by introducing a non local variable
ψ̄, which is related to ωp via the Kuhn-Tucker loading-unloading conditions

ω̇p ≥ 0, ψ̄ − ωp ≤ 0, ω̇p (ψ̄ − ωp) = 0 , (2)

as well as an initial value ωp(t = 0) = 0 and the limit ωp ≤ 1.
ψ̄ and its local counterpart ψ are related by the partial differential equation (PDE)

ψ̄ − `2 ∇2ψ̄ = ψ . (3)

In this equation, ∇2 denotes the Laplacian with respect to the current (Eulerian)
configuration; ` is an internal length parameter.

The local variable ψ in (3) follows from the evolution law

ψ̇ =
1

C

〈

1 + A
σh

σeq

〉

εB
p ε̇p . (4)

This expression has been inspired on Oyane’s work for porous plastic materials [3],
which accounts for the fact that damage is driven by the plastic strain and increases
more rapidly for higher triaxiality.

3 Numerical aspects

The equilibrium equation and nonlocal averaging equation (3) form a coupled
problem. A monolithic algorithm to solve these equations has been developed in
[4]. For many applications, however, a staggered algorithm may be more practical.
First, equilibrium is solved for a constant damage variable ωp, which will give new
stresses σ and equivalent plastic strain εp. After updating the local variable ψ, the
second step is to compute the nonlocal variable ψ̄ via the averaging equation. This
will allow to update the damage ωp and the new yield stress σy, which are then used
in the following load increment.
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Isodamage step:
For a constant damage, the equilibrium problem is solved in an updated La-

grangian form using the implicit commercial software MSC.MARC. Upon conver-
gence, the local damage variable ψ (4) is updated numerically by employing a one-
step integration rule

∆ψ = (( 1 − θ )ht
ω + θ hω)∆εp , where hω =

1

C

〈

1 + A
σh

σeq

〉

εB
p . (5)

Nonlocal averaging at fixed configuration:
The damage variable follows by enforcing the weak form of Eq. (3), which after

making use of the divergence theorem reads

∫

Ω

(

w ψ̄ + `2~∇w · ~∇ψ̄
)

dΩ =

∫

Ω

w ψ dΩ , (6)

where w is a standard test function. This weak form is discretised in a standard
manner by inserting interpolated fields for w and ψ̄. Solving the resulting linear
algebraic system gives the nonlocal variables, which allows to update the damage
variable ωp, and subsequently the yield stress σy needed by MSC.MARC.

Since the plastic strains localise in the regions with strongest damage evolution,
the mesh density is set depending on the spatial distribution of the damage rate.

Cracks are introduced upon total material failure, i.e. at ωp = 1, thus rendering
a smooth transition from the continuous damage field to a discrete crack. The crack
direction is computed from the damage distribution around the crack tip and full
remeshing is performed to accommodate every new crack increment during the crack
advancement. Remeshing is followed by the transfer of state variables. All the above
operations is carried out outside MSC.MARC.

4 Application to blanking

Simulations of the blanking process have been carried out to illustrate the main
model features. In these simulations, the standard contact options in MSC.MARC
have been used.

During blanking one wishes to accurately predict the shape of the cut surface.
Experiments have shown that the clearance between the punch and the die has an
important effect on the final shape. In Fig. 1 the mesh and damage rate field in the
metal sheet are shown before and after the onset of fracture. Mesh adaptivity was
used to capture the gradients in the sheared zone.

5 Conclusions

To model ductile failure in forming processes, from the nucleation of voids to fully
developed crack propagation, ductile damage is used in combination with discrete
crack modelling. Mesh independent results are obtained by means of a gradient
nonlocal damage variable. The staggered approach followed allows to add a gradi-
ent enhanced damage influence to the plasticity formulation of a commercial finite
element software. This is of special interest for engineers who wish to have reliable
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Figure 1: Top: blanking setup and schematic representation of a typical product edge after blank-

ing; bottom: mesh and damage rate evolution.

results when using softening materials, since fully coupled implicit models are more
difficult to implement.

In this framework, where large deformations, highly localised regions and discrete
cracks are present, the use or remeshing has proven to be extremely useful. Adaptive
remeshing is required when one does not know a priori where cracks originate, since
it allows to have an optimum mesh density distribution.
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