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Summary. This paper presents a numerical implementation of the cohesive crack model
for the three-dimensional analysis of concrete fracture based on finite elements with embed-
ded strong discontinuity. The need for a tracking algorithm is avoided by using a consistent
procedure for the selection of the separated nodes, and by letting the crack to adapt itself
to the stress field while the crack opening does not exceed a small threshold value.

1 INTRODUCTION

In the last years the strong discontinuity approach (SDA) has proven to be a sound,
elegant and useful framework for the numerical simulations of localization phenomena.
Two basic families of strategies based on the SDA exist: (1) those in which the displace-
ment discontinuities are handled as global degrees of freedom, and (2) those in which the
discontinuities are local to the finite elements and can be be solved at the element level.
This last one is, in principle, the most simple way to implement the SDA in standard finite
element programs and this strategy has been used in the development of finite elements
with cracks modeled as embedded discontinuities.

However, this approach is not free from problems. It is known that if a straight im-
plementation is carried out, the cracks tends to lock. Therefore strategies have been
designed to avoid locking consisting in the so called crack tracking and exclusion zones.
Crack tracking enforces crack path continuity, which is extraneous to the SDA itself since
the internal strong discontinuity kinematics of the finite element is a kinematical enrich-
ment with incompatible modes in the spirit of the EAS methods of Simo and Rifai and
this does not by itself require any kind of inter-elemental path compatibility. Exclusion
zones are devised to avoid secondary cracking that would (and should actually) occur.
It is therefore of the greater interest, not only practical but also theoretical, to study
formulations that circumvent the need for enforcing crack-path continuity. The objective
of this presentation is to show how, by means of simple considerations, it is possible in
many cases to avoid the enforcement of crack-path continuity in such a way that the
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Figure 1: Tetrahedral finite element. S: Solitary node

macroscopic crack arises from purely local assumptions. As an application to the numer-
ical three dimensional simulation of concrete fracture, the details of an element with a
cohesive embedded crack that self-propagates will be discussed.

2 Finite element kinematics

Figure 1 shows a tetrahedral finite element after cracking. The element is separated in
two zones V − and V +. The basic geometrical parameters are: the crack normal n , and
the vector b+ defined as the sum of the gradient of the linear shape functions associated
to the separated nodes. The only kinematical variable of the crack is the crack opening
vector w.

For the constant strain tetrahedral element the continuum strain can be expressed as:

εc = εa −
[
b+(x) ⊗w

]S
(1)

where εa is the apparent strain tensor computed from the nodal displacements and the
superscript S indicates the symmetric part of a tensor.

3 Cohesive crack model

A simple generalization of the cohesive crack to mixed mode is used and is assumed that
the traction vector t transmitted across the crack faces is parallel to crack displacement
vector w. It is further assumed that the unloading-reloading is linear through the origin:

t =
f(w̃)

w̃
w with w̃ = max (|w|) (2)

where f(w̃) is the softening function for pure opening mode.

4 Equilibrium equation

If we assume that the material outside the crack remains elastic and force local equi-
librium as t = σn, the crack displacement for a given nodal displacement state, can be
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Figure 2: a) Simple tension test specimen. Material properties: E = 10000 MPa, ft = 1 MPa,
Gf = 0.1 N/mm. Exponential softening. b) Load-displacement curve.

obtained by solving the following nonlinear equation:

t =
f(w̃)

w̃
w = n · E : εa − (n · E · b+) ·w (3)

5 Crack initiation

Initially, w = 0 in the uncracked element, and n and b+ are undefined. Thus, the
element loads elastically and σ = Eεa until the maximum principal stress exceeds the
tensile strength. Then a crack is introduced perpendicular to the direction of the maxi-
mum principal stress, and n is computed as a unit eigenvector of σ

By observing that the location of the crack in the element does not enter the equilibrium
equation (3), there is no need to resort to a tracking algorithm to select the solitary node
or nodes. These are determined by requiring that the angle between n and b+ be the
smallest possible, ie:

n · b+

|b+|
= max (4)

The foregoing procedure is strictly local: no crack continuity is enforced or crack ex-
clusion zone defined. This leads in some circunstances to locking after a certain crack
growth. Such locking seems to be due to a bad prediction of the cracking direction in the
element ahead of the pre-existing crack. To overcome this problem without introducing
global algorithms we just introduce a certain amount of crack adaptability within each
element. Therefore we allow the crack to adapt itself to the later variations in princi-
pal stress direction while its opening is small. Threshold values must be related to the
softening properties of the material and values of the order of 0.1-0.2 GF /ft are usually
satisfactory.

6 Numerical experiments

Figures 2 and 3 show a prismatic specimen with a uniform central section loaded axially.
The purpose of the experiment was twofold: 1) to check the ability of the proposed model
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Figure 3: Deformed mesh: a) displacement= 0.06 mm, no consolidated cracks, b) displacement = 0.3 mm
single consolidated crack

to predict a single plane of fracture without forcing the crack continuity and 2): to check
the possibility of localization in a uniform stress field without artificial perturbations in
the mechanical or geometrical characteristics of any element. Other succesful tests will
be reported elsewhere
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