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Summary. The paper deals with the nonlinear finite element analysis of thin shells.
Numerical tests show the advantages of the developed mixed hybrid quadrilateral element.
The essential feature of the element formulation is the robustness in nonlinear compu-
tations with large rigid body motions. It allows very large load steps in comparison to
standard displacement models or enhanced strain models.

1 INTRODUCTION

Low order shell elements based on a standard displacement interpolation are usually
characterized by locking phenomena and thus lead to unacceptable stiff results when rea-
sonable finite element meshes are employed. To overcome these problems mixed element
formulations have been successfully applied. In this context enhanced strain methods1

based on a three–field variational functional are mentioned, where in a second step the
stress field is eliminated using some orthogonality conditions. The application to nonlin-
ear shells2 can be done in a straight forward way enhancing the shell strains derived from
the Green–Lagrangean strain tensor.

In this paper we start with a Hu-Washizu functional with independent displacements,
stresses and strains. The associated Euler–Lagrange equations are the static and geomet-
ric field equations, the constitutive equations and the static boundary conditions. The
inextensible director kinematic accounts for transverse shear deformations and finite ro-
tations. In contrast to the mentioned enhanced strain elements the stress field is not
eliminated from the set of variational equations. Based on a previous publication3, where
appropriate interpolation functions for the independent stress resultants and shell strains
have been formulated, we present an improved strain approximation.
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2 BASIC EQUATIONS

With ξi a convected coordinate system of the considered shell body is introduced. The
arbitrary reference surface Ω is defined by the thickness coordinate ξ3 = 0. The shell is
loaded statically by surface loads p̄ on Ω and by boundary loads t̄ on the boundary Γσ.
Hence, the Hu–Washizu functional can be written as

Π(v,σ, ε) =

∫
(Ω)

[W (ε) + σT (εG(v) − ε)] dA −
∫

(Ω)

uT p̄ dA −
∫

(Γσ)

uT t̄ ds → stat. (1)

where, v = [u,ω]T , σ and ε, denote the independent displacements, stress resultants and
shell strains. The displacement vector of the reference surface follows with u = x − X,
where X(ξ1, ξ2) and x(ξ1, ξ2) denote the position vectors of the initial and current shell ref-
erence surface. Furthermore ω is the vector of rotational parameters. The shell strains are
organized in a vector εG(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]

T , where the membrane
strains εαβ, curvatures καβ and shear strains γα can be derived from the Green-Lagrangean
strain tensor. The work conjugate stress resultants σ = [n11, n22, n12,m11,m22,m12, q1, q2]T

with membrane forces nαβ = nβα, bending moments mαβ = mβα and shear forces qα are
integrals of the Second Piola–Kirchhoff stress tensor. Elastic and inelastic finite strain
constitutive models can be taken into account, since the strain energy W can be for-
mulated as an arbitrary nonlinear function of the independent strains. The stationary
condition is derived in a standard way by variation with respect to the independent tensor
fields.

The associated finite element formulation for quadrilaterals is verified within the isopara-
metric concept. A map of the coordinates {ξ, η} ∈ [−1, 1] from the unit square to the
mid–surface in the initial and current configuration is applied. Furthermore an orthogonal
basis system is generated at the nodes within the mesh input, whereas the actual frame is
obtained using an orthogonal transformation. The position vectors and director vectors
of the initial and current configuration are approximated using bi–linear functions. In
order to obtain a stable element formulation it is crucial to choose the shape functions
for the independent stress resultants and shell strains in a proper way. The interpola-
tion of the membrane forces and bending moments corresponds to the approach for plane
stress elements introduced by Pian and Sumihara4. In this paper we apply an improved
interpolation of the shell strains with two parts

εh = [N1
ε,N

2
ε]

[
ε̂1

ε̂2

]
.

(2)

The vector ε̂1 contains with 14 parameters the same number as for the stress resultant
interpolation. The second vector ε̂2 contains a variable number of parameters β. Numer-
ical investigations show that two parameters for the membrane part and two parameters
for the bending part with associated shape functions are sufficient, thus β = 4. Further
functions do not essentially improve the element behaviour. All matrices are specified in
detail in Wagner and Gruttmann3,5.
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3 EXAMPLE: CHANNEL–SECTION BEAM

As numerical example we consider a clamped channel–section beam with a tip load at
the free end. We assume linear elastic ideal plastic material behaviour with parameters
E, ν and initial yield stress y0 according to Fig. 1. The shell discretization consists of
36 elements along the length direction, 6 elements along the web and 2 elements for each
flange, in total 360 elements. An arc–length scheme with displacement control is applied
to calculate the load carrying behaviour up to a tip displacement of w = 250 cm with
subsequent unloading. The associated load is computed with the present shell element
and compared with the results of the EAS–element2 with four enhanced parameters for
the membrane interpolation.
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L = 900 cm
h = 30 cm
b = 10 cm
s = 1.0 cm
t = 1.6 cm
E = 21000 kN/cm2

ν = 0.3
y0 = 36 kN/cm2

Figure 1: Channel–section beam with geometrical and material data

displacement step w: 50 −→ 53 cm
Iterat. EAS–element present element

1 1.0000000E+00 1.0000000E+00
2 6.3761516E+03 5.5798017E+03
3 1.4983476E+02 2.8338326E+01
4 8.3009989E+01 5.0787877E-03
5 1.0505898E+01 3.4263339E-08
6 9.8385135E+00
7 5.7130968E+00
8 1.2059626E+00
9 2.5993786E-01

10 3.0121923E-03
11 1.9727645E-05
12 2.2762804E-08

displacement step w: 50 −→ 120 cm
Iterat. EAS–element present element

1 no convergence 1.0000000E+00
2 4.7604831E+06
3 1.5814845E+06
4 1.6610973E+05
5 1.2818501E+04
6 3.5064220E+01
7 1.6863763E-01
8 4.2263405E-06
9 1.9314382E-08

10
11
12

Table 1: Norm of the residual vector for a small and large displacement step

The EAS–element is much more sensitive and allows only displacement steps of Δw ≈
1 − 3 cm, whereas with the present element displacement steps of Δw ≈ 50 − 70 cm are
possible, see table 1. The results of both models agree very good in the total range of
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the computed load deflection curves, see figure 2. Without the second part of the strain
interpolation (β = 0) the computed load deflection behaviour is slightly to stiff. Figure 2
contains a plot of the von Mises stresses at the ultimate state.
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Figure 2: Load deflection curves and v.Mises stresses at the ultimate state
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