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Summary. A discontinuous finite element method for the computational modelling of

strong and weak discontinuities at finite strains is introduced. The location of the interface

is independent of the mesh structure and therefore discontinuous elements are introduced,

to capture the jump in the deformation map and its gradient, respectively.

1 INTRODUCTION

In the present contribution a discontinuous finite element method for the computa-
tional modelling of strong and weak discontinuities in geometrically nonlinear elasticity
is introduced. Thereby we denote with ’strong discontinuities’ jumps in the deformation
map, for example cracks, and with ’weak discontinuities’ jumps in the deformation gra-
dient, which occur e.g. at material interfaces. The discontinuity shall not be limited to
interelement boundaries. Therefore we construct discontinuous elements. The suggested
method is closely related to the approach suggested by Hansbo and Hansbo1,2, where an
unfitted finite element method was introduced to simulate strong and weak discontinu-
ities, by means of an extended version of Nitsche’s method.
A variational formulation based on the principle of stationary potential energy is derived
for both, the modelling of strong and weak discontinuities. To model strong discontinu-
ities the cohesive crack concept is adopted. The inelastic material behaviour is covered by
a cohesive constitutive law, which associates the cohesive tractions, acting on the crack
surfaces, with the jump in the deformation map. The formulation extends the approach3

to finite strains.
If weak discontinuities, for example material interfaces or inclusions, are considered, the
deformation map shall be continuous but its gradient can posses a jump along the inter-
face. Since the same discontinuous elements are used, the continuity of the deformation
map has to be ensured. Therefore a finite element method, based on Nitsche’s method4,
for geometrically nonlinear elasticity is formulated. By means of Nitsche’s method the
continuity of the deformation map is ensured in a weak sense, but the discontinuous
element formulation allows for jumps of its gradient.
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2 GOVERNING EQUATIONS

We consider a body B which is divided by a discontinuity Γ into the parts B1 and B2.
The associated normal vector N points from B2 to B1. We consider a nonlinear and non-
continuous deformation map ϕ, which maps the body from the reference configuration
to its spatial configuration. The deformation map as well as its gradient and the related
strain measures are defined separately for each continuous part of the body

ϕ(X) =

{

ϕ1(X) : B1 → S1

ϕ2(X) : B2 → S2 F =

{

F 1 = ∇Xϕ1

F 2 = ∇Xϕ2.
(1)

The variational formulation, concerning strong discontinuities, is given by

δΠ(ϕ, δϕ) =
∫

B

δF : P dV +
∫

Γ

[[δϕ]] · t̄0([[ϕ]]) dĀ −
∫

∂BN

δϕ · t0 dA = 0, (2)

whereby P denotes the Piola stress tensor, which is derived from the strain energy func-
tion by P = ∂Ψ(F )/∂F . The additional interfacial contribution is due to the cohesive
traction vector t̄0 = ∂Ψ̄([[ϕ]])/∂[[ϕ]], which is calculated as the derivative of the cohesive
potential with respect to the jump in the deformation map.
For the bulk material we assume hyperelastic material behaviour of a compressible Neo-
Hooke type. Since we want the cohesive potential to depend only on the jump in the de-
formation map, we introduce the following cohesive potential which leads to the traction-
separation law and results in a symmetric formulation

Ψ̄([[ϕ]]) =
α

β
[1 − exp (−β |[[ϕ]]|)] t̄0 = α exp (−β |[[ϕ]]|)

[[ϕ]]

|[[ϕ]]|
. (3)

Thereby α and β are material parameter.
The variational formulation for the case of weak discontinuities contains additional inter-
facial contributions due to Nitsche’s method and is introduced as

δΠ(ϕ, δϕ)=
∫

B

δF : P dV+
∫

Γ

[[δϕ]] · {P } · NdĀ +
∫

Γ

[[ϕ]] · {A : δF } · NdĀ

+
∫

Γ

θ [[δϕ]] · [[ϕ]]dĀ −
∫

∂BN

δϕ · t0 dA = 0,
(4)

whereby the tangent operator A is calculated as the second derivative of Ψ with respect
to F . The scalar θ is a penalty parameter, which depends on the discretization and has
to be sufficiently large to assure the stability of the method.

3 FINITE ELEMENT FORMULATION AND NUMERICAL EXAMPLES

The weak governing equations are solved using finite elements which allow for a jump
in the deformation map and the deformation gradient. In the discontinuous elements
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Figure 1: Split of linear triangular element

additional displacement degrees of freedom are introduced at the existing nodes. Two
independent copies of the standard basis functions are used, one set is put to zero on one
side of the discontinuity, while it takes its usual values on the opposite side, and vice versa
for the other set. Figure 1 highlights the construction of a discontinuous linear triangular
element.
Finally the applicability of the method for the mesh-independent modelling of strong and
weak discontinuities is highlighted by means of numerical examples. For the simulation
of strong discontinuities a stress-based crack propagation criterion is adopted. As repre-
sentative examples a symmetric peel test is considered, see figure 2 and a plate with a
soft circular inclusion, compare figure 3.

Figure 2: symmetric peel test
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Figure 3: deformation and strain in a plate with

soft circular inclusion

4 CONCLUSIONS

The present approach can be considered as a methodically unified framework for the
modelling of strong and weak discontinuities, since the same discretization is used, which
implies the formulation of the discontinuous elements, and the variational formulations
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differ only in the additional interface contributions due to the cohesive crack concept and
Nitsche’s method respectively. A detailed representation of the suggested approach may
be found in Mergheim and Steinmann5.
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