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Summary. Considering contact between bodies whose surfaces can be described by

algorithmically organized asperities, e.g. after the machining processes, leads to a gen-

eral problem of anisotropic frictional contact. A covariant contact description allows to

generalize all contact characteristics of these surfaces into an anisotropic domain for both

adhesion and sliding behavior in a straightforward form as well as to construct an effective

numerical algorithm within an iterative solution scheme of a Newton’s type. Numerical

examples show the possibility to describe the average behavior of machined surfaces.

1 INTRODUCTION

A generalization of the isotropic macro characteristics for contact surfaces is described
in the literature only for the sliding region mostly by means of the anisotropic friction
tensor. A first general derivation of sliding characteristics based on mechanics of a rigid
block on an inclined plane was presented by Michalowski and Mroz [1]. Zmitrowicz [2]
used a similar model to develop the structure of the friction tensor for sliding forces and
described its properties based on symmetry groups for the tensor. He and Curnier [3] used
the theory of tensor function representations to obtain the structure of the friction tensor
for an arbitrary nonlinear case according to the relative sliding velocity and derived also
thermodynamical restrictions for the friction tensor components.

Despite the extensive literature on finite element solutions for contact problems, there
are only few publications on finite element models for anisotropic friction, e.g. Buczkowski
and Kleiber [4] created an interface element containing the orthotropic sliding law appli-
cable only for small displacements. Review of other non-Coulomb models e.g. statistical
models used in finite element applications can be found in Wriggers [5].

A covariant contact description, developed by Konyukhov and Schweizerhof [6], allows
to construct a numerical algorithm based on a Newton’s type solution within the finite
element method for arbitrary approximations of contact surfaces. The main advantage is
that all contact characteristics as well as all necessary for solution operations are derived
in a covariant form in a spatial coordinate system defined according to the closest point
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procedure on the contact surface. The covariance of all relations allows to generalize them
into anisotropy for both friction and adhesion. It is shown that the latter can be used to
define properties of machined surfaces.

2 COVARIANT DESCRIPTION AND ITS GENERALIZATION

A spatial local coordinate system defined on the master surface is obtained at the
projection point C based on the closest projection of the slave point S:

rs(ξ
1, ξ2, ξ3) = ρ(ξ1, ξ2) + nξ3. (1)

The first two convective coordinates ξ1, ξ2 define the surface point C and, therefore, are
responsible for the tangential contact interaction. The third coordinate ξ3 is the value of
the penetration and is used to define the properties of the normal interaction. The full
contact traction vector R is defined in contravariant basis vectors ρi and n as follows:

R = T + N = Tiρ
i + Nn. (2)

The penalty method is applied for the regularization of the contact conditions leading to
an equation for the normal traction in a closed form: N = εNξ3, if ξ3 ≤ 0; while the
tangent traction T is written in a rate form:

dT

dt
= −εT ξ̇iρi, (3)

where a full time derivative
dT

dt
is taken in covariant form in the spatial coordinate

system on the tangent plane with ξ3 = 0. A generalization for adhesion is obtained after
the introduction of the adhesion tensor B in the evolution equation (3):

dT

dt
= B(vs − v), (4)

where vs−v = ξ̇iρi is a relative velocity vector of the contact point C. The generalization
of the isotropic Coulomb friction law is obtained via the friction tensor F defined in the
surface metrics:

Φ =
√

f ijTiTj − N =
√

T · FT − N. (5)

The sliding criteria are written then as follows

if Φ ≤ 0 → sticking (adhesion), if Φ > 0 → sliding. (6)

The adhesion tensor B and the friction tensor F are chosen to fulfill some thermody-
namical restrictions, as e.g. discussed in [3] and [2] concerning the friction tensor. In
particular, the anisotropy can be inherited from the arbitrary coordinate system on the
contact surface. In this case the tensor is defined via the unit vectors ei = ri

|ri|
, i = 1, 2 of
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this coordinate system as B = λiei ⊗ ei. Fig. 1 shows the so-called spiral orthotropy on
a cylinder, which is defined via the orthogonal spiral net with tangent vectors r1, r2. The
adhesion tensor with stiffnesses along the coordinate lines ε1, ε2 is also given in the pic-
ture after the transformation to the contravariant basis ρ1, ρ2 of the cylindrical coordinate
system.
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Figure 1: Spiral orthotropy on a cylinder. Definition of a spiral net and the adhesion tensor B.
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Figure 2: The variation of the parameters r = ε1

ε2

allows to describe different kinematics of the screw
connection.

2.1 Derivation of the sliding forces and displacements

The anisotropic friction problem is formulated as an optimization problem via the prin-
ciple of maximum dissipation in a continuous form. In order to construct the numerical
algorithm, the return-mapping algorithm with regard to inequalities (6) within the Euler
backward scheme for the evolution equation (4) is applied to compute all characteristics
for sliding, such as a sliding force Tsl and a sliding displacement vector ξsl at each load
step. The sliding force Tsl e.g. is computed as follows:

Tsl = − T̂
√

T̂ · FT̂

|N | with T̂ = BFTtr, (7)
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where the trial force Ttr is computed via the Euler backward scheme for the evolution
equation (4). The linearization procedure of the weak form, formulated also in the spatial
coordinate system, is consistently performed as covariant differential operations on the
tangent plane. As an advantage, all tangent matrices contain geometrical parameters
of the contact surface and, therefore, can be implemented into a finite element program
independent of the order of the corresponding surface approximation.

3 NUMERICAL EXAMPLE

A possibility to model a curved machined surface within the proposed approach is
illustrated with a model of a screw connection, see Fig. 2. A screw, meshed with a
relatively coarse finite element mesh, is contacting with a thread inside a rigid cylinder
(the cylinder is schematically depicted with a single upper element in Fig. 2). Contact
is modeled with a ”point-to-analytical surface” approach. These elements are specified
on the cylindrical part of the screw. As a result, the parameters of both, the adhesion
and the friction tensors, can be calibrated in order to prescribe the resulting kinematics
exactly by keeping the necessary sliding force at a certain level.

4 CONCLUSIONS

• The fully covariant description for the anisotropic contact surfaces was developed.
The description includes the anisotropy for both sliding and adhesion and is realized
as numerical approach within a Newton type iterative solution scheme for problems
discretized by finite elements.

• Parameters of the model such as adhesion and friction tensors can be calibrated in
order to describe e.g. the properties of the machined surfaces.
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