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Summary. In this paper a computational framework for the analysis of coupled hydro-
fracture flow in porous media, using a Finite/Discrete Element Method, is presented. It
encompasses the description of the basic assumptions underlying the proposed strategy, as
well as the details of the numerical approach. The effectiveness of the overall strategy is
demonstrated and the key features of the model are emphasised. Finally, some concluding
remarks are presented.

1 INTRODUCTION

Over recent years, there has been an increasing industrial awareness of the potential
benefits that derive from employing scientific approaches in the exploitation of natural
resources. This is particularly true in the extraction of oil, gas and water and is also of
paramount importance in preventing the leakage of hazardous materials, such as toxic
and radioactive waste. This type of application is characterized by the presence of soil
or rock-like materials, in which the pores of the solid phase are filled with one or more
fluids. An additional degree of complexity is introduced by the coalescence and growth
of voids, which results in the appearance of macro-cracks and subsequent fragmentation.

In order to understand the complex interplay between different phenomena, several ap-
proaches and theories have been proposed. One strategy aims to model the flow through
cracks 1 without taking into account the flow within the material itself. This simpli-
fication is reasonable for soils or rock-like materials with low permeabilities, since the
flow throughout the fractures is dominant. However, an accurate analysis of the in situ
stress field can only be obtained if the soil or rock-like material is treated as a porous
medium. This is particularly relevant for materials with high permeabilities where the
seepage behaviour becomes prominent.
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2 CONSTITUTIVE EQUATIONS

In porous materials, the definition of an effective stress is certainly not an easy task.
Several expressions have been proposed in the literature and it is accepted that, the effec-
tive stress should include the deformation of the grains within the skeleton. In addition,
in a porous material the pores can be filled with two or more fluids. Therefore, the de-
termination of an effective pressure has also received special consideration. A widespread
definition for the effective stress, σ”

ij , is given by 2:

σ”
ij = σij + α δij Sw p (1)

where, α is the Biot number, which is introduced to take into account the volumetric
deformability of the particles. It is related with the bulk modulus of the skeleton (KT )
and the bulk modulus of the grains (KS). The effective stress, σ”

ij , in this work, is related
to the incremental strain, dǫij , and rotation, dΩkl, by means of an incremental constitutive
relationship:

dσ”
ij = Dijkl(dǫkl − dǫ0

kl) + dσ”
ikdΩkj + dσ”

jkdΩki (2)

where, the last two terms account for the rotational stress in the Green-Naghdi rate and
Dijkl is a fourth order tensor defined by state variables and the direction of the increment.
Finally, dǫ0

kl represents the incremental initial strain tensor due to thermal or autogeneous
strain of the grain compression.

3 GOVERNING EQUATIONS

The first equation is the total momentum equilibrium equation for the partially satu-
rated soil-fluid mixture, where, the acceleration of the fluid relatively to the solid and the
convective terms have been neglected. This assumption is valid for medium speed and
dynamics of lower frequencies phenomena 3. The second equation is derived by ensuring
mass conservation of the fluid flow in the seepage. These assumptions allow the final form
of the governing equations, which is known as u−p formulation, to be written as:

σij,j − ρ üi + ρ bi = 0 (3)

ṗs

Q s

+ α ǫ̇ii + kij(−ps′j
+ ρs Sw bj − ρs Sw üj)′i = 0 (4)

In this work, an individual fracture is treated as a single confined aquifer, where the
mass conservation is based on a cubic law for the flow within the fracture:

e3

12µ
(−pn′j

+ ρn bj)′i +
ṗn

Qn

= 0 (5)

where, e is the aperture of the fracture (with unit of [m]) and µ is the viscosity (with
unit of [Pa.s]). The Qn term represents the storativity of a single fracture, and like a
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porous medium, reflects the compressibilities of the fluid and rock. However, the rock
compressibility term does not reflect the intergranular skeleton, but rather the pressure
dependence of the fracture volume, which is simply the normal stiffness of the fracture,
kf , (with unit of [m/Pa]).

The system given by the three governing equations (3), (4) and (5) and the boundary
conditions describes a well-defined problem which can then be discretized and solved.

4 THE DISCRETE APPROXIMATION AND ITS SOLUTION

Firstly, the Galerkin (or weighted residual) method is used to obtain the weak form
of the system of equations, presented in the previous section. Then, a discretization in
space is undertaken by a standard finite element procedure. Finally, a central difference
approximation is employed for the time discretization.

The governing equations (3, 4 and 5) have been transformed into a set of algebraic
equations in space with only time derivatives remaining. The system can then be written
as

∫

Ωs

(∇Nu)T σ”dΩs − Qp̄s + M¨̄u = f̄1

Hsp̄s + QT ˙̄u + Ss
˙̄p
s
= f̄2

Hnp̄n + Sn
˙̄p
n

= f̄3

(6)

with the constitutive equation supplying the increments of σ”
ij.

5 COUPLING PROCEDURE

From the analysis of the previous system, it is not easy to recognize that the mass
conservation of the fluid network, Equation (6)3, is coupled with the other two equations.
However, it can be observed that:

- The displacements computed by Equation (6)1 are affected by an external force
caused by the pressure of the fluid network. This load is applied as a traction
boundary condition at the solid/fracture interface. On the other hand, the dis-
placements calculated in Equation (6)1 define the coordinates of the fluid network.
Therefore, it controls the apertures in the fluid network and triggers new ones.

- The coupling between the fluid flow in the seepage/fracture interface is made using a
master/slave procedure. In this procedure the nodes in the network field are consid-
ered as master and the nodes in the seepage field, which are in the seepage/fracture
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interface are slaves. As a consequence, the mass matrices and the internal and exter-
nal force vectors of the slaves are added into the master. Also, the equations of the
slaves nodes are modified by the ones related with the specific master nodes. Finally,
the equations are then solved and the balance flow in the interface is guaranteed.

The inter-dependence of the different phenomena is depicted in Figure 1.

Figure 1: Coupling procedure

6 DISCRETE CRACK INSERTION

The transition of a body from a continuum description into discrete is developed from
dispersed micro cracks coalescing into macroscopic fractures. The appearance of a discrete
fracture within the material results in the global realisation of inelastic strains and the
associated unloading of the surrounding material. The process of inserting a discrete
fracture into a continuum based finite element mesh follows three key steps: (i) the
creation of a non local failure map, that is based upon the weighted nodal averages of
the damage within the finite element system; (ii) the failure map is used to determine
the likelihood of fracture within the domain; and (iii) a numerical code to perform the
topological update whereby a fracture is inserted in the domain, and any additional nodes
are inserted and necessary elemental connectivities are updated.

The so-called failure factor is typically defined as the ratio of the inelastic fracturing
strain ǫf to the critical fracturing strain ǫf

c or the ratio of damage and the critical damage.
The elemental or local failure factor Fk that is associated with the Gauss point of an
element k is given by

Fk =

(

ǫf

ǫf
c

)

k

or Fk =
(

D

Dcr

)

k

(7)

where Fk is associated with the elemental local fracture direction θk which is defined as
being normal to the direction of the local failure softening direction. Discrete fracture
is realised through the failure factor reaching unity. In addition, the nodal basis of a
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finite element system leads to a simpler and more efficient approach for the insertion
and creation of discrete fractures. The associated failure factor F̄p and the corresponding
direction of failure θ̄p for the nodal point p are given by,

F̄p =

ngaussadj
∑

k=1

Fkwk

ngaussadj
∑

k=1

wk

, θ̄p =

ngaussadj
∑

k=1

θkwk

ngaussadj
∑

k=1

wk

, (8)

where the summation is calculated over the number of element Gauss integration points
that are immediately adjacent and wk is the elemental weighting factor, which is normally
taken as the elemental volume or failure factor. When the associated failure factor F̄p and
the direction of failure for the considered node p have been determined, a discrete fracture
of the given orientation will be inserted into the finite element mesh, passing through the
associated nodal point.

Generally, there are one of two choices to be made at this stage. Firstly, the frac-
ture plane can be aligned in the exact orientation of the weighted average nodal failure
direction, thereby following a process known as intra-element fracturing. In the second
approach, the discrete fracture orientation is aligned with the best orientated element
boundary attached to the node considered , thereby following a process known as inter-
element fracturing where a series of new nodal points are systematically created but no
new elements are generated.

7 CONCLUSIONS

The applicability of the concepts described in the above will be illustrated in the pre-
sentation through several practical examples. These comprise the prediction of material
failure in slope-stability, oil and water confinement. A more detailed description of the
methodology will be given in a forthcoming publication where the performance of the
overall strategy is demonstrated.
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