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Summary. A novel intrinsic implementation of return mapping algorithms and consis-

tent tangent operators for general three-invariant isotropic plasticity models is presented.

1 INTRODUCTION

It is now well understood that accurate and stable algorithms for integrating the rate
constitutive equations in elastoplasticity are of major importance for carrying out efficient
stress computation schemes; furthermore, the paramount role of the consistent tangent1

has been put forward by several authors. Nevertheless, in many cases the exact consistent
linearization may be demanding or computationally expensive to obtain.

A first source of difficulty in obtaining consistent tangent operators lies in the evaluation
of the gradient of the plastic flow i.e., for standard models, in computing the second
derivatives of the yield function. This is however only a preliminary task to accomplish
since the complete linearization requires the inversion of the jacobian associated with the
local stress computation scheme. This topic has been previously discussed by the authors
and an intrinsic representation of the consistent tangent and its explicit expression with
no use of matrix operations has been arrived at2; these ideas have been further elaborated
by extending the treatment to the principal axis formulation of isotropic plasticity3.

Objective of this work is to present an implementation of the return mapping algorithm
and of the consistent tangent that aims to take proper advantage of the isotropic properties
of the model. In particular, we provide an entirely intrinsic representation of all the
tensor variables that enter the stress computation algorithm and, by properly exploiting
the linearized form of the residual equations, we derive a novel intrinsic expression of the
consistent tangent which, besides being more compact and effective with respect to other
existing ones, is also amenable to a direct specialization to the plane stress case4.
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2 CONSTITUTIVE MODEL AND TIME-DISCRETE FORMULATION

Let ε be the strain measure at a point X of a structural model, and assume the
usual additive decomposition into elastic (e) and plastic (p) shares. For linear isotropic
elasticity one has the constitutive law for the Cauchy stress:

σ = E(ε − p) = [2G (1 � 1) + λ(1 ⊗ 1)] (ε − p) (1)

where G and λ are the Lamé’s moduli; the definitions along with the matrix form of
the dyadic and square tensor products can be found elsewhere2. Kinematic and isotropic
hardening of the model are governed by:

β = Hkinη = hkin(1 � 1)η; ϑ = hiso(ζ) (2)

where hkin is the kinematic hardening modulus and hiso a nonlinear isotropic hardening
function. Denoting by τ = σ−β the relative stress and I1, J2, J3 the principal invariants,
we consider a general isotropic yield function in the form:

φ̃(σ, β, ϑ) = φ(τ , ϑ) = ϕ(I1, J2, J3) − ϑ − Yo (3)

where Yo depends upon the initial yields limit of the material.
Setting EH = E + Hkin, nH = d�φ and Hiso = h′

iso, for plastic loading (φtr > 0) one
has the residual equations5:



















r(k)
e

= E
−1
H

(

τ (k) − τ tr
)

+ γ(k)n
(k)
H = 0

r
(k)
ζ = H−1

iso

(

ϑ(k) − ϑtr
)

− γ(k) = 0

r
(k)
� = φ(τ (k), ϑ(k)) = 0

(4)

which are solved for the increment of the plastic parameter to get, for the k−th iterate:
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where G
(k)
H = E

−1
H + γ(k) d2

��φ
(k) is the rank-four elastoplastic compliance tensor.

It is worth emphasizing that, as put forward by (5), the solution of the local return

mapping algorithm is accomplished by computing the inverse of the rank-four tensor G
(k)
H

although this operation is not strictly required for computing the increments of the state
variables. The reason underlying this choice is mainly the fact that the tensor G

−1
H has to

be computed at the end of the constitutive iterations in order to build up the expression
of the consistent tangent1.

To achieve an effective implementation of the return mapping, one has to express all
the tensors appearing in (5) in intrinsic, matrix-free format; in particular, this is required
only for the elastic strain residual r(k)

e
, since the following representation formulas hold2:
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and
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S(k) being the deviator of τ (k).

3 INTRINSIC RESIDUAL REPRESENTATION

Recalling definition (4)1 and that τ (k) = Eε − EHp(k), the trial stress τ tr can be
expressed as:

τ tr = τ (k) + γ(k)
EHn

(k)
H (6)

whence, owing to the isotropy of φ and of the elastic constitution, it can be considered
as a nonlinear isotropic tensor function of τ (k). As such, the trial stress (6) is amenable
to the following representation:

τ tr = δ
(k)
1 1 + δ

(k)
2 S(k) + δ

(k)
3 [S(k)]2 (7)

where the coefficients are computed by projecting (7) onto the basis 1, S(k), [S(k)]2, i.e.

[A(k)][δ(k)] = [b(k)] ⇔
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(8)

It is not difficult to show that det (A(k)) vanishes whenever the stress deviator has non-
trivial coalescent eigenvalues; in this case one has then two possible solutions depending
on whether the Lode angle equals 0 or π/3.

4 A NOVEL EXPRESSION OF THE CONSISTENT TANGENT TENSOR

The consistent tangent can be derived by comparing the two equations:

d"σ = E − E d"p; d"τ = E − EH d"p

which yield:
d"σ = Etan = E − EE

−1
H E + EE

−1
H d"τ (9)

The derivative d"τ is easily obtained from the linearization of the residual equations at
the local converged state, i.e. from the system:
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which, solved for d"τ gives:

d"τ = Dtan E
−1
H E =

[

G
−1
H −

G
−1
H nH ⊗ G

−1
H nH

G
−1
H nH · nH + Hiso

]

E
−1
H E

Substitution of the previous expression in (9) supplies the novel expression of the consis-
tent tangent as:

Etan = E − EE
−1
H E + (EE

−1
H � EE

−1
H ) Dtan (10)

whereby a representation formula analogous to that of G
−1
H is finally arrived at.

5 CONCLUDING REMARKS

A novel implementation of the constitutive algorithm and consistent tangent for general
three-invariant elastoplastic models has been provided.

The solution update is entirely performed in intrinsic form by suitably exploiting basic
theorems for nonlinear isotropic tensor functions; this allows one to obtain the represen-
tation formula for the elastic strain residual and the closed-form expression of the local
elastoplastic tangent G

−1
H , this last one being required for the derivation of the consistent

tangent tensor. Accordingly, the only tensor-to-matrix mapping operation needed in the
proposed implementation is the one relevant to the construction of the consistent tangent
matrix to be assembled later at the global level.

The present approach can be shown to be applicable with no modification to other
problems formulated in terms of any reduced set of stress components, and in particular
to the plane stress case4, where no special assumption needs to be considered, as done for
earlier algorithmic treatments.

REFERENCES

[1] J. C. Simo and R. L. Taylor. Consistent tangent operators for rate-independent elasto-
plasticity. Comp. Meth. in Appl. Mech. Engng., 48:101–118, 1985.

[2] V. Palazzo, L. Rosati, and N. Valoroso. Solution procedures for J3 plasticity and
viscoplasticity. Comp. Meth. in Appl. Mech. Engng., 191(8):903–939, 2001.

[3] L. Rosati and N. Valoroso. A return map algorithm for general isotropic elasto/visco-
plastic materials in principal space. Int. J. Num. Meth. Engng., 60(2):461–498, 2004.

[4] N. Valoroso and L. Rosati. Consistent derivation of the constitutive algorithm for
plane-stress isotropic plasticity. Part I: Theoretical formulation. Part II: Computa-
tional issues. 2005. Submitted.

[5] J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, Berlin, 1998.

[6] N. Valoroso and L. Rosati. Matrix-free implementation of isotropic tensor functions
in classical plasticity. 2005. In preparation.

4


