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Summary. The effect of size and slip system configuration on the tensile stress-strain

response of micron-sized planar crystals as obtained from discrete dislocation plasticity

simulations is presented. The crystals are oriented for either single or symmetric double

slip. With the rotation of the tensile axis unconstrained, there is a strong size dependence,

with the flow strength increasing with decreasing specimen size. Below a certain specimen

size, the flow strength of the crystals is set by the nucleation strength of the initially present

Frank-Read sources. The main features of the size dependence are the same for both the

single and symmetric double slip configurations.

1 INTRODUCTION

There is a considerable body of experimental evidence that plastic deformation in crys-
talline solids is size dependent at length scales of the order of tens of microns and smaller.
This is typically associated with plastic strain gradients and geometrically necessary dislo-
cations, see for example Ebeling and Ashby1 and Fleck et al.2. However, there is growing
evidence that plasticity size effects exist even when loading is compatible with an overall
homogeneous deformation state as in the single crystal compression tests of of Uchic et al.3

and Greer at al.4. In these experiments, cylinders, with diameters from 0.5 µm to 40 µm
and height to diameter ratios in the range 2:1 to 4:1, were machined from a bulk single
crystal using a focused ion beam microscope (FIB) and subject to uniaxial compression
using a nanoindenter with a flat tip. While the Ni and Ni3Al intermetallic crystals studied
by Uchic et al.3 were oriented for single slip, Greer et al.4 employed gold single crystals
mainly oriented in a symmetric double slip configuration. In these experiments, the flow
strength of the smallest specimens was about an order of magnitude greater than that of
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the larger specimens but still substantially below the theoretical strength that would be
expected to prevail for defect-free whiskers.

Two-dimensional discrete dislocation simulations of Deshpande et al.5 have shown that
the mechanism for the increasing strength with decreasing size in crystals oriented for
single slip is largely consistent with the “dislocation starvation” picture of Greer et al.4.
Here, we also present results from Deshpande et al.6, using two-dimensional small-strain
discrete dislocation plasticity to investigate the size dependent tensile response of crystals
oriented for symmetric double slip.

2 DISCRETE DISLOCATION FORMULATION

We consider elastically isotropic crystals with Young’s modulus E = 70 GPa and Pois-
son’s ratio ν = 0.33. Consistent with the plane strain assumption, only edge dislocations
are considered, which have a Burgers vector b = 0.25 nm. The undeformed crystals are
of dimension 2L × W with L/W = 1.5 to match the aspect ratio in the experiments of
Uchic et al.3 and the specimen sizes varied from W = 0.25 µm to W = 8.0 µm. Initially,
the crystal is free of mobile dislocations, but dislocations can generate from sources that
are equally dispersed over the slip planes with a density of ρsrc = 56 µm−2. The sources
nucleate a dipole when the Peach-Koehler force exceeds a critical value of τnucb over a
period tnuc = 10ns; τnuc is taken to have a Gaussian distribution with a mean strength
τ̄nuc = 50 MPa and a standard deviation of 1 MPa. There is also a random distribution
of point obstacles with strength τobs = 150 MPa and density ρobs = 56 µm−2. The drag
coefficient for glide is B = 10−4 Pa s, which is a representative value for several FCC
crystals. Here we present results for crystals oriented for symmetric double slip, that is
the crystals have slip systems at φ = ±45◦ with the positive x1 axis as sketched in Fig. 1.
These results are contrasted with the predictions of Deshpande et al.5 for crystals with
one slip system at φ = 45◦ but otherwise identical to the ones analyzed here.
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Figure 1: Sketch of the single crystal specimen analyzed and the sign convention employed for the edge
dislocations.

The tensile axis of the specimen is aligned with the x1 direction, see Fig. 1. Tension is
imposed by prescribing u1 = U , T2 = 0 on x1 = 2L and u1 = −U , T2 = 0 on x1 = 0, where
Ti = σijnj is the traction on the boundary with outward normal nj. The lateral edges,
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on x2 = ±W/2, are traction free, i.e. T1 = T2 = 0. In addition, u2 = 0 is imposed on one
material point at (2L − xε, 0), where xε = 0.1L. This prevents rigid body translation in
the x2 direction but does not restrict the rotation of the tensile axis of the specimen. Even
though the rotation of the tensile axis of the specimen is unconstrained, the displacement
boundary conditions, prevent the rotation of the ends of the specimen. This condition
is representative of the constraints in the compression tests of Uchic et al.3 and Greer et
al.4. A time step of ∆t = 0.5 ns is needed to resolve the dislocation dynamics so a rather
high loading rate U̇/L = 2000 s−1 is used to obtain a strain of 0.01 in 10, 000 time steps.

3 UNIAXIAL TENSION WITH SYMMETRIC DOUBLE SLIP

The tensile stress, σ, versus strain, U/L, responses of three specimen sizes of the
crystals oriented for symmetric double slip are plotted in Fig. 2a. In all calculations in
Fig. 2a, the first dislocation activity occurs at σ ≈ 95 MPa. Since the Schmid factor for
the slip system is (sin 2φ)/2 = 0.5, this value is consistent with the mean value of the
source strength distribution being τ̄nuc = 50 MPa. Subsequently, for the W = 1.0 µm and
4.0 µm specimens, there is a sharp drop in the stress followed by essentially an ideally
plastic response. On the other hand, there is nearly no stress drop in the W = 0.5 µm
specimen with periodic fluctuations in the applied stress about a fixed mean value of the
applied stress. These periodic fluctuations are associated with the nucleation and exit of
dislocations from the x2 = ±W/2 traction-free boundaries. It is worth noting that in this
specimen, the rate of dislocation nucleation is approximately equal to the rate at which
dislocations exit the specimen.
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Figure 2: (a) Small-strain results for the tensile response of three sizes of single crystals oriented for
symmetric double slip. (b) Flow strength σf as a function of the specimen size W for crystals oriented
for single and symmetric double slip. Results from Deshpande et al.5,6.

The results in Fig. 2a show that the flow strength is strongly dependent on the specimen
size W . In order to quantify this size dependence, the flow strength σf (defined as the
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average stress between 0.04 ≤ U/L ≤ 0.05) is plotted in Fig. 2b as a function of the
specimen size W . The results indicate that the flow strength σf increases with decreasing
W before leveling off at W ≈ 0.375 µm. Also included in Fig. 2b are the predictions of
Deshpande et al.5 for crystals with one slip system at φ = 45◦ (but otherwise identical to
the symmetric double slip crystals analyzed here). The variation in flow strength with W
in the single and symmetric double slip crystals is almost identical.

A power-law relation of the form

σf = α
(

W

W0

)−n

, (1)

where W0 = 1 µm is a reference size, fits the data in Fig. 2b well over the range 0.75 µm ≤

W ≤ 4.0 µm with the choices α = 67 MPa and n = 0.49. Figure 2b indicates that while the
flow strength scales approximately as σf ∝ W−0.5 for intermediate sizes, there exist lower
and upper plateaus of the flow strength with the large specimens (W = 8.0 µm) having a
flow strength higher than that given by eq. (1) while the small specimens (W < 0.4 µm)
have a flow strength less than that estimated from eq. (1). Since the flow strength of the
small specimens is governed by the nucleation stress of the sources, σf ≈ 2τ̄nuc/ sin 2φ for
W < 0.4 µm.

In summary, the simulations suggest that the basic mechanisms of size dependence are
similar in the single and symmetric double slip experiments of Uchic et al.3 and Greer et
al.4 and consistent with the “dislocation starvation” picture4.
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