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Daniel Balzani?, Jörg Schröder†1, Dietmar Gross†2, and Patrizio Neff†3

?Institute of Mechanics (AG4), Department of Mechanics
Technical University of Darmstadt, Germany
e-mail: balzani@mechanik.tu-darmstadt.de

†1Institute of Mechanics, Department of Civil Engineering
University of Duisburg-Essen, Germany

†2Institute of Mechanics (AG4), Department of Mechanics
Technical University of Darmstadt, Germany

†3Department of Mathematics
Technical University of Darmstadt, Germany

Key words: Hyperelasticity, Polyconvexity, Anisotropic, Damage, Soft Tissues.

Summary. In this contribution an anisotropic damage model for arterial walls is
proposed assuming damage only in fiber direction. This approach is applied to a polyconvex
stored energy function in order to obtain a Legendre-Hadamard stable material model
for fixed damage states, which also guarantees the existence of minimizers of underlying
boundary value problems. In the present paper the proposed model is adjusted for the
Media and Adventitia of a human abdominal aorta and a numerical example is presented
where the damage distribution in an overexpanded atherosclerotic artery is investigated.

1 INTRODUCTION

Arterial walls are characterized by an anisotropic and incompressible material behavior.
Due to the special composition, orientation and weak interaction of particular fibers within
arterial walls the material can be approximated by the addition of an isotropic part
representing the ground substance and the superposition of two transversely isotropic
models for two embedded fiber families, cf. Holzapfel, Gasser and Ogden [1]. A suitable
polyconvex model for the description of the hyperelastic basic behavior of soft biological
tissues found in arterial walls is introduced in Balzani, Neff, Schröder and Holzapfel [2].
This model is founded on the concept of structural tensors and representation theorems of
isotropic tensor functions are applied; for an introduction to this subject see Boehler [3].
Discontinuous damage effects are observed in experiments when arteries are overexpanded,
cf. [1]. This effect can be described by the model proposed in Balzani, Schröder and Gross
[4], see also Schröder, Balzani and Gross [5]. The damage model therein is formulated
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in the concept of internal variables, see Lemaitre and Chaboche [6]. Additionally, a
referential damage state is introduced in order to satisfy the assumption that no damage
occurs in the physiological range of deformations.

2 Constitutive Model

In the context of hyperelasticity the material behavior can be described by a stored
energy function ψ := ψ(C,M), here defined per unit reference volume. In order to fulfill
the principle of material frame indifference a priori, the energy depends on the right
Cauchy Green deformation tensor C. For the representation of the transverse isotropy,
important for the description of the stress-strain response of the fibers inside arterial walls,
a so-called structural tensor M(a) := a(a) ⊗ a(a) with the fiber direction a is introduced.
This leads to the fact that the constitutive equation fits into the definition of an isotropic
tensor function and therefore automatically fulfills the principle of material symmetry.
We consider a stored energy of the form given by

ψ = ψiso +
2∑

a=1

[
(1−D(a))ψ̂

0
(a)

]
, with ψ̂0

(a) = ψaniso1
(a) + ψaniso2

(a) , (1)

with the isotropic part for the embedding ground substance
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and the two transversely isotropic parts for the fibers

ψaniso1
(a) =




α1(J

(a)
4 − 1)α2 for J

(a)
4 ≥ 1

0 for J
(a)
4 < 1

(3)

ψaniso2
(a) =




α3(K

(a)
3 − 2)α4 for K

(a)
3 ≥ 2

0 for K
(a)
3 < 2 ,

(4)

proposed in [2]. It is to be remarked that the hyperelastic isotropic and transversely
isotropic stored energy functions are polyconvex. Hereby, the existence of solutions of
boundary value problems is guaranteed if coercivity of the isotropic part is satisfied and
as a byproduct the Legendre-Hadamard-condition is fulfilled a priori. The damage is
characterized by the scalar damage variable D given by

D̂(a)(ψ̂
0
(a)) = γ1

(
1− e(−β(a)/γ2)

)
, (5)

which is a function of the internal variable β(a)

β(a) = sup
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This variable is defined in such a way, that the discontinuous character of the damage in
arterial walls can be described. Additionally, ψ̂0

(a),ini represents the transversely isotropic
effective energy at a referential damage state, where the damage evolution starts. For
details of the damage model, especially the function for the stresses, thermodynamical
consistence and derivation of tangent moduli we refer to [5].

3 Damage in a Human Abdominal Aorta

As an example we simulate the deformation of a human abdominal aorta with a slight
artherosclerotic plaque. The first step is the adjustment of the elastic material param-
eters to experiments in the physiological range of deformations in order to obtain the
hyperelastic ground behavior, cf. [2]. The chosen material parameters for the Media and
Adventitia are given in Table 1.

c1 ε γ α1 α2 α3 α4

[kPa] [kPa] [-] [kPa] [-] [kPa] [-]
Media 17.0 22.0 10.8 9 · 1014 20.5 17.0 1.8

Adventitia 7.0 22.0 10.8 25000.0 5.0 110.0 2.0

Table 1: Material parameters of the arterial wall

The components of the artherosclerotic plaque are treated as isotropic and modeled
by the Neo-Hooke model; no damage evolution is assumed. For the material parameters
describing the damage inside the arterial wall we choose γ1 = 0.9, γ2 = 280.0 kPa for the
Media and γ1 = 0.9, γ2 = 1000.0 kPa for the Adventitia.

Extracellular
Lipid

Calcification

Adventitia

Media

Plaque

a)

p = 0.0 kPa

0.25
0.232143
0.214286
0.196429
0.178571
0.160714
0.142857
0.125
0.107143
0.0892857
0.0714286
0.0535714
0.0357143
0.0178571
0

b)

D(1)

p = 500.0 kPa

Figure 1: a) Finite-Element mesh of unloaded configuration of the considered artery with particular
components and b) overexpanded artery at an internal pressure of p = 500.0 kPa ≈ 3750.0 mmHg with
distribution of damage D(1).
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In Fig. 1 the considered Finite-Element mesh of a slightly deseased artery is illustrated.
Internal pressure of at first p = 180 mmHg, which is regarded as the maximum value of the
physiological load, is applied. This situation is defined as the referential damage state and
now the damage evolution starts. The internal pressure is increased up to p = 3750 mmHg
and for this loading condition the damage distribution inside the artery is depicted in Fig.
1. It should be noted that the calcification is treated as nearly rigid and the parameters
for the other plaque components are rather arbitrarily chosen.

4 Conclusion

In this contribution the deformation of a human abdominal aorta with a slight artheroscle-
rotic plaque has been simulated. The hyperelastic basic behavior has been represented
by a polyconvex stored energy. Thereby, we satisfy a priori the Legendre-Hadamard
condition and guarantee the existence of solutions of the boundary value problem. A
thermodynamically consistent damage model has been applied to this energy, which is
able to describe discontinuous damage inside the arterial wall considering a referential
damage state. The parameters have been adjusted to the Media and Adventitia and a
computer simulation of the overexpansion of an artery showed the performance of the
model.
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