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Summary. In this contribution we aim at the elaboration of configurational forces in the
context of multiplicative elasto-plasticity. The underlying decomposition of the deforma-
tion gradient is thereby considered as a representative and general kinematical framework
for finite inelasticity.

1 INTRODUCTION

Usual Newtonian mechanics address the movement of particles in physical space. Es-
helbian or configurational mechanics, however, are essentially based on variations of the
placement of particles in material space. Consequently the first approach is commonly
denoted as the spatial motion problem while the second framework is referred to as the
material motion problem. Configurational mechanics are of particular interest for the
modelling of defects, inhomogeneities, heterogeneities and so forth in, e.g., solid mechan-
ics; the main reason being that these phenomena are energetically conjugated to volume
forces in configurational balance of linear momentum representations.

In this contribution we aim at the elaboration of material forces in the context of
multiplicative elasto-plasticity, which is considered as a representative and general frame-
work for finite inelasticity. The introduction of appropriate Eshelbian stress tensors and
Eshelbian volume forces with respect to different configurations, namely the spatial, the
material and - what we call - the intermediate setting, thereby turns out to be of cardinal
importance.

Based on fundamental kinematic considerations, non-vanishing dislocation density ten-
sors in terms of the plastic or elastic distortion can be introduced. These quantities, which
apparently stem from the general incompatibility of the intermediate configuration, di-
rectly contribute to the intermediate volume forces. As a result, the obtained represen-
tations recapture the celebrated Peach-Koehler force which takes the interpretation of
driving single dislocations. Contrary, material volume forces include, e.g., the gradient of
the plastic distortion which implicitly incorporates dislocation density tensors.
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2 ESSENTIAL KINEMATICS

Let the deformation gradient of the (sufficiently smooth) spatial motion problem, x =
ϕ(X, t) in Bt, be decomposed via

∇Xϕ = F
.
= F e · F p with J, Je, Jp > 0 (1)

wherein J = det(F ), etc. The corresponding tangent map of the material motion problem,
X = Φ(x, t) in B0, consequently reads

∇xΦ = f
.
= fp · f e with j, jp, je > 0 (2)

wherein j = det(f), etc. In what follows we assume the combination of the spatial and
material motion to render the identity mapping such that

f
.
= F−1 , f e

.
= F−1

e and fp
.
= F−1

p , (3)

respectively. For completeness, let appropriate velocity fields be denoted by

v = Dtϕ with l = dxv = DtF · f and V = dtΦ with L = DXV = dtf · F (4)

which results in the relation v = −F · V .

3 BALANCE OF LINEAR MOMENTUM

The classical format of balance of linear momentum is usually expressed in terms of,
e.g., the spatial motion Piola stress tensor Πt. When referring to both, the spatial as
well as to the material motion problem (here for the static case) we end up with different
representations which are related via Piola transformations, for instance

∇X ·Π t + bint
0 + bext

0 = 0 , ∇x · σt + bint
t + bext

t = 0 with bint,ext
t = j bint,ext

0 (5)

∇X ·Σt + Bint
0 + Bext

0 = 0 , ∇x ·πt + Bint
t + Bext

t = 0 with Bint,ext
0 = J Bint,ext

t (6)

wherein bint
0 = 0, Bint

0 6= 0 and further momentum representations being omitted.

4 COLEMAN-NOLL ENTROPY PRINCIPLE

With these relations in hand, let the strain energy density take the representation

Jp Wp = J Wt = W0 = W0(F , F p; X) = W0(F e; X) (7)

so that the (isothermal) Dissipation inequality of the spatial motion problem results in

Jp Dloc
p = J Dloc

t = Dloc
0 = Πt : DtF −DtW0 − bint

0 · v = −Πt
p : DtF p ≥ 0 (8)

whereby use of the abbreviations or rather hyperelastic formats

Πt = ∂F W0|F p
and Πt

p = ∂F pW0

∣∣∣
F

(9)
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has been made. By analogy, further Piola type stress tensors are introduced via

πt = ∂fWt|fp
, πt

e = ∂fe
Wt , πt

p = ∂fp
Wp

∣∣∣
f

and Πt
e = ∂F eWp , (10)

respectively. Correlated Cauchy (or rather Eshelby) type stresses consequently result in

σt = Wt it − f t · πt = Wt it − f t
e · πt

e ,

Σt
e = Wp It

p − F t
e · Πt

e = Wp It
p − f t

p · πt
p ,

Σt = W0 It − F t · Πt = F t
p · Π t

p .

(11)

5 CONFIGURATIONAL VOLUME FORCES

In order to identify configurational volume forces we apply pullback transformations to
the standard spatial motion balance of linear momentum representation. This approach
recaptures on the one hand the hyperelastic formats highlighted above and, on the other
hand, identifies the sought volume forces. In view of the material configuration we obtain,
for instance, the relation

Bint
0 = −Πt

p : ∇XF p − ∂XW0 and Bext
0 = − J F t · bext

t . (12)

Taking additionally the general incompatibility of the intermediate configuration into
account, we furthermore observe

Bint
p = −Σe : De − f t

p · ∂XWp and Bext
p = − Je F t

e · bext
t (13)

which constitutes the configurational volume force related to the (intermediate) balance
of linear momentum flux Σt

e. Note that Dt
e = [∇t

x×f e ] ·cof(F e) represents a dislocation
density tensor with respect to the elastic distortion.

6 PEACH-KOEHLER FORCE

The intermediate configurational volume force is directly related to the celebrate Peach-
Koehler force which drives the movement of a single single dislocation. In this context,
we first introduce the correlated intermediate force

F =
∫
Vp

Bint
p dVp = −

∫
Vp

Σe ×De dVp , (14)

whereby any dependence of the strain energy density on material placements X as well
as external volume forces bext

t have been neglected for conceptual clarity. Second, the
incorporated dislocation density tensor is referred to solely one single dislocation, namely

Dt
e = δp Bbur

p ⊗ T p (15)

wherein Bbur
p characterises the appropriate Burgers density, i.e.

∫
At

[∇t
x × f e ] · n dAt =∫

At
je Bbur

p dAt 6= 0, and T p denotes the unit tangent vector according to the dislocation
line. The Peach–Koehler force in the domain of interest consequently results in

FPK = −
∫
Vp

Σe × [ δp Bbur
p ⊗ T p ] dVp = −

∫
Cp

[ Σe ·Bbur
p ]× T̄ dSp . (16)
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