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Summary. Although great progress has been made in the area of material modeling for 
anisotropic metal sheets during the last decade, still the vast majority of industrial sheet 
forming simulations are based on the well-known, quadratic Hill'48 yield condition. The 
present work is part of an ongoing project at Volvo Cars and Chalmers University, with the 
object of bringing industrial simulations one step forward in terms of accuracy and 
reliability. In this report the special needs and demands of industrial analysts regarding 
material modeling will be discussed. With this background some recent yield criteria will be 
presented and analyzed. 
 
1 INTRODUCTION 

In the present paper results from a project going on at Volvo Cars and Chalmers 
University, aiming at improving the quality and reliability of sheet forming simulations by 
improving the material modeling and characterization. The first results of this project were 
presented in Mattiasson and Sigvant1. In that study the yield condition by Barlat and Lian2 
(Yld89) was used in combination with the Miyauchi shear test for determining the plastic 
hardening curve. 

There are several aspects of material modeling, which have to be considered, such as yield 
condition, plastic hardening curve, hardening law, strain rate dependence, etc. In the present 
report only the first of these aspects will be considered – the yield condition. 

In the area of mechanical simulation there is one, big, fundamental difference between the 
academic and the industrial view of the matter, and that is time. The primary object of the 
academic researcher is to produce results with as good agreement with the reality as possible, 
without consideration of time in any respect. For the industrial analyst, on the other hand, 
time is always a factor to consider. This concerns the simulation time itself, as well as the 
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time for performing material tests and so on. In the area of sheet metal forming simulation this 
puts limitations on the complexity of the material models. Even if we limit the scope to 
phenomenological models, a complex model involving many parameters still have to be 
supported by several time-consuming, and expensive material tests. A complex material 
model usually also deteriorates the numerical efficiency. To sum up, in an industrial 
environment accuracy and efficiency always have to be balanced. 

The standard test for sheet metals is the uniaxial tensile test, which normally is performed 
in three different directions. Such a set of tests yields six parameters, which can be used to 
determine the shape of the yield locus: the uniaxial yield stresses and the R-values (Lankford 
coefficients) in three directions. The uniaxial tensile tests have usually to be supplemented by 
some kind of biaxial test (e.g. shear or hydraulic bulge test) in order to determine the plastic 
hardening curve for large values of plastic strain. Such a test yields additional one or two 
material parameters. Thus, normally we have access to seven or eight material parameters to 
determine the shape of the yield locus. It should be pointed out that the well-known Hill'48 
and Yld89 yield criteria only make use of four of these parameters. 

2 RECENT YIELD CRITERIA FOR METALLIC SHEETS 

2.1 Background 
In the following we will just consider yield criteria in the plane stress sub space. The yield 

conditions are assumed to be written in the form 

0σσf Y =−=  (1)

where σ  is the effective stress and Yσ  is the yield stress. 
In 1972 Hosford3 presented a non-quadratic, isotropic yield function, which in plane stress 

has the following form 
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The exponent m is here assumed to be a real number in the range 2 ≤ m < ∞. In the limits 
the current yield condition is identical to the von Mises and the Tresca yield criteria, 
respectively. During the years several generalizations of Hosford's yield criteria to planar 
anisotropy have been published. They are all said to belong to the "Hosford family" of yield 
criteria. The most well-known of these is the one by Barlat and Lian2 from 1989. Two of the 
most recent ones are reviewed in the following sections. 

2.2 The yield condition by Banabic et al. (BBC2000) 
 Recently, Banabic et al.4, 5, 6 have in a series of papers presented different versions of a 

yield criterion, which is an extension of the Yld89 criterion by including more anisotropy 
parameters. This yield criterion will in the following be called BBC2000, and can in its most 
general form be written 
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This criterion involves 8 independent parameters. By putting some of the parameters equal 
to each other, or putting them equal to one, the number of independent parameters can be 
reduced. The parameters must be determined from a number of experimental tests, which is 
equal to, or higher than, the number of independent parameters. 

2.3 A new yield condition by Barlat et al. (Yld2000) 
Barlat et al.7 have presented a yield criterion (Yld2000), in which the anisotropy is 

introduced by means of two linear transformations of the Cauchy stress tensor. This criterion 
can be expressed as 
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where the variables 1
~σ ′  and 2

~σ ′  are principal values of the fictitious stress tensor σ′~  with 
components 
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and 1
~σ ′′  and 2

~σ ′′  are principal values of the fictitious stress tensor σ ′′~  with components 
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There are a maximum number of independent anisotropy parameters 331211 ...,,, LLL ′′′′  equal to 
eight in this model. It is obvious that Yld89 is a special case of this criterion. It is also obvious 
that BBC2000 and Yld2000 are very similar. They are in fact identical in case the full set of 
independent parameters (eight) is used. It should finally be mentioned that the present yield 
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criterion can be viewed as a special case of a general method for deriving anisotropic yield 
criteria based on linear stress transformations proposed by Barlat et al.8. 

3  CONCLUDING REMARKS 
Both the BBC2000 and the Yld2000 yield condition seems to be ideally suited for 

industrial applications, since they can make use of all the available seven or eight material 
parameters. Furthermore, like for all the yield criteria within the “Hosford family” the shapes 
of the yield loci, mainly determined by the exponent m, are quite realistic, a fact that has been 
proven by numerous experiments, and by comparisons with polycrystalline models. 

The anisotropy parameters involved in these models have to be determined, either by 
solving a nonlinear system of equations with, for instance, the Newton-Raphson method, or 
by minimizing an error functional. 

Both the above models have been implemented as “user materials” in the dynamic, explicit 
FE-code LS-DYNA. In order to check the computational efficiency of the new models, a 
typical deep drawing problem was solved with these models, and also with the Yld89 model 
being part of the ordinary LS-DYNA material library (material 36). The use of the 
implemented models increased the total computing time with approximately 4-8 %. This is an 
insignificant increase, and the new models can, thus, be considered to fulfill any demands 
concerning efficiency. 
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