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1 INTRODUCTION

In applications where weight in relation to structural properties are critical in combi-
nation with energy absorption, structural foams have shown advantages in comparison to
many other engineering materials. The objective of this study is to model the response
of an open-cell foam at large deformations and high strain rates. The main idea from the
micro-mechanical point of view is to consider the open-cell foam as a network of struts,
where each strut connects two vertex points. The strut deformation is assumed to depend
directly on the macroscopic deformation and the force carried by a strut are linked to
the longitudinal change of its vertex-to-vertex vector. Thereby, the strut is modeled as
a viscoplastic large deformation 1D element. As a result, the microscopic Cauchy stress
is established on the strut and further homogenized to the macroscopic Cauchy stress by
averaging over a statistical ensemble of struts.

The model has been implemented in the context of large strains and viscoplastic
Perzyna type behavior, with a dynamic yield surface.

2 DEFORMATION OF STRUT

2.1 Kinematics of strut

Consider the open-cell foam, in figure 1(a), represented as a network of struts, [1]. In
particular, we focus on a representative strut in the network with the vertex points X ′

i

and X i in the undeformed configuration, figure 1(b). Hence, the strut vertex-to-vertex
vectors in the undeformed and deformed configuration are represented by; Ri and ri,
respectively, defined as:

Ri := X ′
i
− X i = RiN i and ri := x′

i
− xi = rini, (1)

where N i and ni are the Lagrangian and Eulerian directors of the strut;

N i := [X ′
i
− X i] ‖ X ′

i
− X i ‖

−1 and ni := [x′
i
− xi] ‖ x′

i
− xi ‖

−1 . (2)
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Assuming Affine deformation of the micro-structure i.e. ri = F̄ · Ri, where F̄ is the
macroscopic deformation gradient, we obtain the stretch λ := λi = (ri/Ri)ni and its
magnitude

λi :=‖ λi ‖= (N i · C̄ · N i)
1

2 , (3)

where λ is the total stretch of the strut and C̄ = F̄
T
F̄ is the Right Cauchy-Green

deformation tensor.

2.2 Constitutive modeling of longitudinal strut response - viscoplastic flow

In order to model the strong rate-dependence in the deformation of the foam micro
structure, we assume that the stretch λ decomposes multiplicatively in a recoverable
(elastic) component λe an irrecoverable (viscoplastic) component λp so that λ = λeλp,
leading to the logarithmic strain, ε := log(λ), which is subdivided additively into an
elastic and a plastic part, εe and εp written as

ε = εe + εp with εe = log(λe) and εp = log(λp). (4)

For simplicity the strut force f , see figure 1(c), is assumed to be parallel with the strut, so
that f

i
:= fini, where the magnitude of the longitudinal component is assumed to possess

the constitutive dependence fi = fi(ε
e, κ), where κ is the hardening variable associated

with the micro-force K = Hκ and H is the hardening modulus. The resulting elastic law is
formulated as linear elastic in the logarithmic strain; hence, the magnitude of the normal
force is formulated in the stiffness coefficient (k) as

f e = kεe = k(ε− εp). (5)
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Figure 1: Representation of the micro-stricture of an open-cell foam
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To account for rate-dependent viscoplastic flow of the strut deformation, the inelastic
component of the total strain evolves according to Perzyna’s flow rule [3] as

ε̇p :=
1

t∗
ηd(ξ)

∂ψy

∂f
=

1

t∗
ηd(ξ)sign(fi) (6)

k̇ :=
1

t∗
ηd(ξ)

∂ψy

∂K
= −

1

t∗
ηd(ξ), (7)

where t∗ is the relaxation time. Moreover, to model the decay of the rate-dependency at
high strain rates and high stress levels, the over-stress function ηd(ξ) is formulated in the
argument ξ as

ηd(ξ) =

(

ξ

1 − ξ

)m

with ξ =
〈ψy〉

〈ψy〉 − ψd
, (8)

where m is the creep exponent, ψy(f,K) is the quasi-static yield function, whereas ψd(f)
is the bounding or dynamic yield surface, defined as

ψy(f,K) := abs(f) − fy − K < 0 and ψd(f) := abs(f) − fd with fy � fd. (9)

It may be noted that ηd = 0 is obtained whenever ψy < 0 corresponding to elastic
behavior, whereas ηd → ∞ when the stress approaches the dynamic yield surface, i.e.
when ψd → 0, corresponding to rate independent response.

2.3 Homogenization

The macroscopic Cauchy stress is obtained by averaging the dyadic σi = ri ⊗ f
i
over

a population of M struts:

σ̄ = n

(

∑M
i=1 ri ⊗ f

i

M

)

, (10)

where n is the number fraction of struts in the material, cf. [4].

3 SIMULATIONS

The proposed model has been implemented and preliminary results are obtained as
shown in figure 2(a) and 2(b) for a simple tensile test with the macroscopic deformation
considered as

F̄ =





λ̄ 0 0
0 1 0
0 0 1



 with ˙̄λ = 1 · 10−1 . . . 1 · 107.

In figure 2(a) the force-strain response for a strut parallel to the loading direction is
plotted. It is clearly seen that for the lower strain rates the static rate-independent
elastic-plastic response situation is retrieved, whereas at the high strain rates the response
is much stiffer and the response curves approach the dynamic yield surface (represented
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(b) Macroscopic stress-strain response.

(c) Lagrangian strut distribution. (d) Eulerian strut distribution.

by the dashed line (f = fd = 0.5N) asymptotically as the strain rates are increased.
The response in figure 2(b) shows the homogenized behavior for an (initially) isotropic
network, as shown in figure 2(c) with a random distribution of strut orientations on the
hemisphere. As expected, a smoother response for the network as compared to that of
individual struts is obtained. In figure 2(d), the orientation of struts are depicted in terms
of the corresponding deformed hemisphere, induced by the macroscopic deformation F̄ .
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