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Summary. A strain gradient crystal plasticity model is used to predict size effects for

an FCC cube oriented block subjected to simple-shear loading conditions. A feature of the

model is inclusion of the geometrically necessary dislocation densities necessary to satisfy

the lattice compatibility and both short and long range dislocation interactions. The long

range interactions define a back stress which introduces an internal length scale suitable

for predicting material size effects.

1 INTRODUCTION

Microstructural and geometrical dimensions have been shown to influence the macro-
scopic response, leading to so-called size effects. These effects become increasingly appar-
ent if the dimensions decrease towards an internal length scale of the material i.e. the
grain size. This condition can occur in micro-forming of ultra-thin sheet where the sheet
thickness ranges between 50 to 500 µm.

2 MATERIAL MODEL

Evers [1, 2] developed a mechanism based strain gradient crystal plasticity model that
includes dislocation hardening arising from both short and long range dislocation inter-
actions. Short range interactions include those between statistically stored (ρSSD) and
geometrically necessary (ρGND) dislocations densities and give rise to the slip system re-
sistance, while long range interactions arise from the repulsive nature of the dislocation
induced stress fields. The geometrically necessary dislocations ensure compatibility of the
crystal lattice in the presence of slip gradients, where the slip rates on a slip system α

(α = 1, 2, 3 · · · , 12) for an FCC lattice, are defined by:
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with:

sα = Gb

√

∑

ξ

Aαξ|ρGND|+
∑

ξ

Aαξ|ρSSD| (2)

with τα and ταb the resolved shear and resolved back stresses, respectively, G the shear
modulus, b the Burgers vector, and γ̇α

0 and m are material constants. The resolved stress
(τα) and resolved back stress (ταb ) are computed from:

τα = sα0 · P · n
α
0 (3)

ταb = −sα0 ·
(

σint
e + σint

s

)

· nα0 (4)

where sα0 and nα0 are the slip direction and slip system normal, respectively, where the
subscript 0 refers to the undeformed reference state and P is the second Piola-Kirchhoff
stress. The tensors σint

e and σint
s are the dislocation induced internal stresses determined by

integrating the elastic stress fields associated with individual edge and screw dislocations
over an area defined by the radius R according to:
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Lattice incompatibility resulting from gradients in the crystallographic slip is restored
through the geometrically necessary dislocations as follows:

ρGND = −
1

b

∑

α

∇0γ
α · sα0 (7)

for an edge dislocation while a similar equation can be derived for a screw dislocation.
As can be seen from Equation 2, both ρGND and ρSSD contribute to the slip system
resistance (sα), while gradients of ρGND define an internal stress field which is used to
compute the back stress.

3 APPLICATION TO SIMPLE-SHEAR

The influence of the sample height is shown for the case of simple-shear of a semi-infinite
block of material as shown in Figure 1. The block represents an FCC cube oriented
material with 12 unique slip systems. Four sample heights ranging from 0.22 ≤ H ≤
2.2 mm are modeled using a single column of 50 four noded plane-strain elements with
selectively reduced integration. Along the upper and lower surfaces, crystallographic slip
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Figure 1: Geometry and boundary conditions for the simple-shear test. Periodic boundary conditions
are applied to nodes in the x1 direction while plane-strain exist in the x3 direction.

in the surface normal direction (Γn) is prohibited, representative of a slip obstructing
grain boundary. Figure 2 plots the through-thickness crystallographic slip rates and
ρGND distributions for the case when H=0.22 mm and after an applied shear of γ =
0.01. In Figure 2 slip systems pairs develop with identical slip rates to maintain lattice
symmetry and compatibility in response to the applied load and boundary conditions.
A net crystallographic shape change results from the contribution of slip systems with
opposing slip directions and defines the crystallographic origin of the shear plotted in
Figure 3. No crystallographic slip develops along the {001} plane as a result of the
imposed plane-strain and periodic boundary conditions. Approaching the upper and
lower surfaces, where the crystallographic slip vanishes, the ρGND’s develop in order to
enable a gradient in the slip rates according to Equation 7. Along the {100} planes edge
dislocations are formed while screw dislocations accumulate on the {010} planes. The
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Figure 2: Through-thickness slip rates and ρGND distributions for H=0.22 mm at γ = 0.01. The four
unit cubes sketch the 12 FCC slip systems oriented such that [100], [001], and [010] are in the x1, x2, and
x3 directions, respectively, and where α indexes the 12 slip systems.

influence of the sample dimension H is evident in the applied force and through-thickness
shear profiles plotted in Figure 3. With decreasing sample dimension, the shear profiles

3



C.J. Bayley, W.A.M. Brekelmans, and M.G.D. Geers

deviate from the homogeneous solution obtained by prescribing ρ
ξ
GND=0.0 along the upper

and lower surfaces. In the former case, a boundary layer develops in which there is an
increased dislocation density (Figure 2) and an associated internal stress field arising from
Equations 5 and 6. With H=0.22 mm, the depth of the boundary layer extends to the
mid-plane of the specimen. Due to the presence of this boundary layer, the results are
size dependent, with decreased sample dimension H associated with increased hardening
i.e. smaller is stronger.
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Figure 3: Comparison of the through-thickness normalized shear profiles and applied external stress for
2.2 ≤ H ≤ 0.22 mm. The homogeneous solution is obtained by prescribing ρ

ξ
GND=0.0 along the upper

and lower surfaces which has the effect of permitting unrestricted surface normal crystallographic slip.

4 CONCLUSIONS

• Material size effects can be introduced with a crystal plasticity model by including
internal stress fields associated with the gradient of the geometrically necessary
dislocation density.

• For the case of simple shear in which surface normal crystallographic slip is re-
stricted, boundary layers develop in which there is a heterogeneous deformation
gradient. In order to satisfy the gradients in the crystallographic slip rates, geomet-
rically necessary dislocations are introduced which contribute to the size-dependent
behaviour of the results.
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