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1 INTRODUCTION

In this contribution, we discuss a finite deformation FE-model for crack propagation
based on the concept of partition of unity, originally introduced by Melenk and Babuška1,
and the developments by Wells et al.2. The main concept is to consider the total deforma-
tion map as a superposition of two fields, one continuous and one discontinuous, leading
to a coupled system of equilibrium equations to be solved using a monolithic approach.

To model the fracture behaviour of the material, we distinguish between two different
models. Firstly, a cohesive zone model of damage-plasticity type is formulated in the
reference configuration, relating the cohesive Mandel traction to a material ’jump’, which
in turn is related to the direct (spatial) discontinuity1†. Secondly, the Material Crack
Driving Force (MCDF) model is formulated as a generalised Griffith criterion based on
the material crack driving force, identified as a reaction force at the crack tip in the
inverse discontinuity problem4, energy conjugated with the virtual crack extension. Both
models are compared and discussed with respect to structural response, efficiency, aspects
of implementation etc.

Furthermore, we extend the model to account also for dynamical effects, e.g. rapid
transient loading which is of great importance in many manufacturing applications and
impact loading situations. The intention is to build a theoretical and numerical foun-
dation for further analyses of important dynamic phenomena such as crack arrest, crack
branching and rate dependent cohesive behaviour among others. The introduction of in-
ertia effects also rises interesting questions regarding the numerical treatment in terms of
efficient and stable time integration algorithms.

1†The formulation in terms of the Mandel traction and the material jump is made to ensure material
frame indifference of the model, cf.3
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2 KINEMATICS

As a basis for the kinematical description, we consider the direct deformation map
which maps points in the material reference configuration, X ∈ B0, onto points in the
deformed spatial configuration, x ∈ B as

ϕ [X, t] = ϕc [X, t] + HS [S [X]] d [X, t] withd = x − xc (1)

where HS [S [X]] is the Heaviside function centered at the internal (closed) discontinuity
boundary, ΓS, shown in Figure 1. The argument S [X] is defined as

S [X]<0 X∈D−
0 , S [X]=0 X∈ΓS, S [X]>0 X∈D+

0 withN =
∂S [X]

∂X
X∈ΓS, ‖N‖ = 1 (2)

where N is the normal vector to ΓS pointing into the region D+
0 . Note that the discon-

tinuous part, d, is defined on a subregion D0 of B0 (grey area) with assumed Dirichlet
boundary conditions along the boundary ∂D+

0 \ΓS.

Figure 1: Kinematical representation of the discontinuous direct motion problem.

The pertinent deformation gradient becomes

F = ϕ ⊗ ∇X = F c + HSF d + δS d ⊗ N with F c = ϕc ⊗ ∇X and F d = d ⊗ ∇X (3)

where δS[S[X]] is the Dirac delta function.

3 GOVERNING EQUATIONS AND SOLUTION STRATEGY

To arrive at the coupled equilibrium equations, we first consider the strong form of the
equation of motion

ρ0ü − Σt
1 · ∇X = bmec (4)

with Σt
1 being the first Piola-Kirchhoff stress tensor and bmec the (applied) mechanics body

forces and where the acceleration ü can be subdivided (due to the present kinematical
representation) as

ü = ϕ̈c + HSd̈ (5)

From Eq. (4), the standard (continuous) form of the principle of virtual work can
easily be established, which in turn may be reformulated to the final coupled continu-
ous/discontinuous form by insertion of the discontinuous kinematical representation in
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Eqs. (1),(3):

(C):

∫
V0

Σt
1 : ∆F c dV =

∫
Γ0

∆ϕc · t1dΓ +

∫
V0

∆ϕc · b
mecdV −

∫
B0

ρ0∆ϕc · ü dV (6)

(D):

∫
D0

HSΣ
t
1 : ∆F d dV +

∫
ΓS

∆d · t1dΓ =

∫
D0

HS∆d · bmecdV −

∫
D0

HSρ0∆d · ü dV (7)

4 FRACTURE MODELLING

We will present and compare two different models, a cohesive zone model and the
Material Crack Driving Force model.

4.1 Cohesive zone model

To model the stress degradation along the internal interface ΓS, we formulate a cohesive
damage-plasticity model based on previous works5,4, thus the nominal traction vector is
defined in terms of an effective nominal traction t̂1 and a damage variable 0 ≤ α ≤ 1
as t1 = (1 − α)t̂1. Furthermore, this effective nominal traction is related to the effective
Mandel traction Q̂ via t̂1 = F−1

c · Q̂. Finally, Q̂ is expressed in terms of a material jump
J = F−t

c ·d as Q̂ = K ·(J−Jp) = K ·J e where K is a stiffness parameter for the interface
and where Jp and J e are the plastic and elastic part of the material jump respectively.
The evolution laws for Jp an α are then defined such that the resulting relation between
t1 and d is according to Figure 2.

σf

de dp

Figure 2: Relation between nominal interface traction and discontinuity.

4.2 Material Crack Driving Force model (MCDF)

The second model proposed is based on the MCDF, P , identified in the inverse discon-
tinuity problem4 as a reaction force at the crack tip, energy conjugated with the virtual
crack extension. Interesting properties of this force is that the magnitude corresponds
to the value of the J -integral and that the force is aligned in the direction of maximum
energy release. Hence, a fracture criterion may be formulated such that the crack is prop-
agated in the direction of the force when the magnitude exceeds a critical value. The
drawback of this model is the large mesh sensitivity. However there are techniques to
decrease this dependence, e.g. domain integral methods or equivalent.

3



Martin Fagerström and Ragnar Larsson

5 NUMERICAL EXAMPLE

To illustrate the capabilities of the proposed model, we study a simple numerical ex-
ample in terms of a DCB-test with a pre-defined fracture interface (modelled through the
finite elements), shown in Figure 3a, loaded with an increasing loading rate: quasi static
(no dynamic effects), ṙ = 6.66 and 13.33 m/s. The coupled continuous/discontinuous
problem is discretised using standard finite element approximations for the two fields and
solved with an explicit time integration scheme. Moreover, the continuous material re-
sponse is considered Neo-Hookean with E = 3.24 GPa and ν = 0.35 and the fracture
process is governed by the proposed cohesive zone model with mode I fracture energy
GI

f = 100 N/m and failure stress σf = 20 MPa. In Figure 3b, the damage distribution
along the internal interface at the final load step, corresponding to r = 0.03 mm, is pre-
sented for the different loading rates. It is noted that a higher loading rates leads to
shorter ’fully open’ cracks (α = 1).
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Figure 3: a) Modelled DCB with h=1mm, L=2mm and a thickness of 1mm. b) Damage distribution
along ΓS for different loading rates
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