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Summary. This contribution deals with a solution strategy pertinent to cyclic loading

for a large number of cycles. Rather than integrating the problem for the entire time-

domain, a multi-scale time-cycle-modeling approach is introduced. The strategy is applied

to a constitutive model involving damage coupled to plasticity.

1 INTRODUCTION

Simulating cyclic loading of materials using conventional constitutive models in the
time-domain is inherently expensive when it is desirable to trace the response under
a large number of cycles. One way of circumventing this drawback is to introduce a
coordinate transformation and substitute the cycle number for the physical time as the
independent variable. Such an approach, however, requires that the evolution laws of the
constitutive model are derived in terms of, e.g., amplitudes and mean values rather than
the ”actual” state variables used in a conventional constitutive model.

In this contribution, we propose a novel method of constructing consistent cyclic mod-
eling based on conventional time-domain-models. The method relies on an exact difference
equation in terms of individual cycles, where each time-cycle constitutes one discrete cycle
step. Taking the exact difference equation as the starting point, we device a FE approxi-
mation in the cycle-domain, corresponding to the Quasi-Continuum Method in a spatial
domain, whereby the difference equation is solved approximately. The resulting strategy,
where the actual time history need be integrated for a few individual cycles only, allows
for global error control. An adaptive algorithm, based on duality arguments, is then ap-
plied to adapt the finite element mesh in the cycle-domain with respect to a chosen error
tolerance. In this manner, we resolve a minimal number of actual time-cycles in order to
reach a prescribed accuracy.

This paper gives the theoretical basis for the time-cycle approximation in terms of
formulating the exact difference equation (in the cycle-domain) pertinent to a canonical
time-dependent problem. Furthermore, we introduce the approximate solution of the
cycle-domain problem.
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2 THE DIFFERENCE EQUATION

Consider the canonical 1st order problem in time over the time-interval I = (t0, T ),

dtx + A(x) = f(t) t ∈ I = (t0, T )
x = x0 at t = t0

, (1)

where x represents a (discrete) set of states, dt indicates the time derivative and A(x) rep-
resents the time-invariant system properties. x0 represents initial data and f(t) embodies
the external loading.

Assume that a numerical solution of (1) becomes extremely expensive to compute due
to a large range of timescales; the duration of the simulation time, the varying loading, and
the system properties. In such cases, we wish to find a ”smoother” solution x in terms of a
macro-scale response, i.e., the solution described on the time-scale of the simulation time.
To this end, we subdivide the time-interval into sub-increments, or ”cycles”, I =

⋃
N

n=1 In,
where In = (tn−1, tn) is a cycle of individual length kn = |In| = tn − tn−1. The choice
of cycles should relate to a ”near-periodic” solution of x for the proposed algorithm to
work efficiently, i.e., the cycles should relate to the properties of f(t) (near stationary
solutions) and/or A(x) (near homogeneous (harmonic) solutions). However, we stress
that the framework is consistent and thus, independently of the choice of cycles, (i) the
solution converges with increasing number of cycles (ii) the framework allows for global
error control.

We now define the macro-scale solution to be Xn = x(tn), i.e., Xn−1 represents the
initial value for the problem at hand on the interval In. The canonical problem (1) can
now be reformulated into an exact difference equation as follows:

Xn = Xn−1 + ∆X(Xn−1, n) n = 1, 2, . . . , N
X0 = x0

, (2)

where the difference term ∆X is defined through a local problem. In order to establish
the local problem, we introduce the local solution on cycle n, ξn, and a local time, τ =
(t − tn−1)/kn ∈ (0, 1), whereby ∆X(Xn−1, n) = ξn(1) − ξn(0) and ξn(τ) is the solution of

dτξn + knA(ξn) = f̂n(τ) τ ∈ (0, 1)
ξn = Xn−1 at τ = 0

, (3)

where
f̂n(τ)

def
= knf(tn−1 + τkn). (4)

It can easily be verified that (2) and (3) give the identical result as (1), i.e.,

ξn(τ) ≡ x(tn−1 + τkn) for τ ∈ (0, 1) and n = 1, 2, . . . , N. (5)

The purpose of introducing (2) and (3) is to obtain good results with (2) approximated
sparsely, i.e., we hope that {Xn} is a piecewise smooth sequence such that ∆X can be
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approximated accurately without actually solving (3) for all cycles n. Hence, as discussed
earlier, any solution to (2) and (3) is an exact solution to (1), independent of the choice
of {In}, whereas a good choice of cycles allows for good approximation properties of (2).

The exact solution sequence to (2) is denoted Z = {Xn}
N

n=0. We are thus in the position
to formulate the variational, or weak, form of (2) as follows: Find Z ∈ X such that

a(Z, δZ) = 0 ∀δZ ∈ X , (6)

where X is the space of all admissible sequences. In standard, Galerkin, fashion, we
now introduce a reduced-dimensional space XR corresponding to the Quasi-Continuum
method, whereby the approximate problem reads: Find ZR ∈ XR such that

a(ZR, δZR) = 0 ∀δZR ∈ XR. (7)

Solving (7) approximately, evaluating only a few cycles in Gauss-point fashion, is gen-
erally of much less cost than that of solving the ”exact” problem (1). Using the technique
of solving a dual problem, we may estimate the error Z−ZR due to the approximate space
XR ⊂ X . Note that even the space X is finite, dim X = N . Increasing the dimension of
XR until XR = X results in the resolution of each cycle, and thus gives the exact solution
to (1). In conjunction with an adaptive algorithm, the error estimate thus allows for
balancing of computational effort (number of resolved cycles) and accuracy.

As the model problem, we wish to study the case of a material point (homogeneous
specimen) subjected to cyclic loading, whereby the evolution of damage coupled to plastic
deformation is investigated using the proposed method. This numerical investigation will
be presented at the conference.
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