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E. Oñate and D.R.J. Owen (Eds)
c©CIMNE, Barcelona, 2005

THE MECHANICAL RESPONSE OF A CERAMIC
POLYCRYSTALLINE MATERIAL WITH

INTER-GRANULAR LAYERS

Eligiusz W. Postek?, Tomasz Sadowski†, and Stephen J. Hardy?

?School of Engineering
University of Wales Swansea

Singleton Park, SA2 8PP Swansea, Wales, United Kingdom
e-mail: e.w.postek,s.j.hardy@swansea.ac.uk, web page: http://www.swansea.ac.uk

†Faculty of Civil and Sanitary Engineering
Lublin University of Technology

ul. Nabystrzycka 40, 20-618 Lublin, Poland
e-mail: sadowski@akropolis.pol.lublin.pl, web page:

http://akropolis.pol.lublin.pl/users/sadowski/index.htm

Key words: Ceramics, Interfaces, Finite Strains.

Summary. This paper describes an investigation into the behaviour of a two-phase

ceramic polycrystalline composite material. Observations of SME images show that the

polycrystals consist of grains and relatively thin intergranular layers. The properties of

the layers can significantly affect the behaviour of the entire polycrystal. The grains may

be elastic and the layers can be metallic as in this case.

1 INTRODUCTION

A typical application of polycrystalline materials is the fabrication of cutting tools. The
tools are working in such severe conditions as high dynamic and temperature loadings.
An exemplary two-phase material used for them may consist of elastic grains and ductile
interfaces. The interfaces are thick enough not to be treated as only contacting adhesive
layers. Our interest will focus on the behavior of the relatively thick intergranular layers
which affect performance of entire sample. An example of SME image showing grains,
interfaces and their ideogramic idealization are presented in Figure 1 (left, middle). The
grains can exhibit anisotropic behaviour.

2 FORMULATION

The incremental linearized and FE discretized form of the nonlinear equation of equi-
librium fulfilling boundary and initial conditions valid for elasto-plastic problem with
nonlinear geometry1,2,3,4 is given below
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Figure 1: SME image (left), idealization (middle), gradient decomposition (right).

where B
′T
L is the large displacements operator, BT

L is the linear operator, t
tτ̄ is the Cauchy

stress matrix, ∆S is the stress increment, N is the shape functions matrix, ∆q is the
displacements increment vector, ∆f is the body forces increment vector and ∆t is the
tractions external load increment vector. When considering the finite strains effect5,6 the
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Figure 2: Discretization of RVE (left), interfaces (middle), displacement field before ”first yield” (right).

gradient F = ∂(X + u)∂X is decomposed into its elastic and plastic parts, F = FeFp,
Figure 1 (right). To integrate the constitutive relations the deformation increment ∆D

is rotated to the unrotated configuration by means of rotation matrix obtained from the
polar decomposition F = VR = RU, namely ∆d = RT

n+1∆DRn+1. Then, the radial
return is performed and the stresses are transformed to the Cauchy stresses at n + 1,
namely σn+1 = Rn+1σ

u
n+1R

T
n+1. The stresses are integrated using the consistent tangent

formulation7 and the integration is done in the unrotated configuration as for small strains.

3 NUMERICAL EXAMPLE

The mechanical properties of the polycrystal consisting of elastic grains and metallic
interfaces are as follows; grains: Young modulus 4.1x1011Pa and Poisson’s ratio 0.25,
interfaces: Young modulus 2.1x1011Pa, Poisson’s ratio 0.235, yield limit 2.97x1011Pa and
small hardening modulus 1.0x106Pa. The dimensions of the sample are 100x100x10 µm.
The scheme of the Representative Volume Element is given in Figure 2 (left, middle).
The RVE is discretized with 48894 elements and 58016 nodes. The sample is fixed on

2



Eligiusz W. Postek, Tomasz Sadowski, Stephen J. Hardy

X

Y

Z

1.97-02

1.84-02

1.71-02

1.58-02

1.45-02

1.32-02

1.18-02

1.05-02

9.21-03

7.89-03

6.58-03

5.26-03

3.95-03

2.63-03

1.32-03

1.33-06
  default_Fringe :
Max 1.97-02 @Nd 292
Min 1.32-06 @Nd 55666

MSC.Patran 2000 r2 08-Jun-05 16:35:28

Fringe: nodal displacements,gn,041, d_gn041neu: Displacements, Translations-(NON-LAYERED) (MAG)

X

Y

Z X

Y

Z

6.18-04

6.18-04

5.77-04

5.36-04

4.95-04

4.53-04

4.12-04

3.71-04

3.30-04

2.89-04

2.47-04

2.06-04

1.65-04

1.24-04

8.24-05

4.12-05

 0.
  default_Fringe :
Max 6.18-04 @Nd 3346
Min  0. @Nd 1

MSC.Patran 2000 r2 08-Jun-05 16:11:36

Fringe: element stress results,sv_gn,006, sv_gn006neu: Strevar, eldt-x-(NON-LAYERED) 

X

Y

Z X

Y

Z

2.07-02

2.07-02

1.94-02

1.80-02

1.66-02

1.52-02

1.38-02

1.24-02

1.11-02

9.68-03

8.29-03

6.91-03

5.53-03

4.15-03

2.76-03

1.38-03

2.10-09
  default_Fringe :
Max 2.07-02 @Nd 28826
Min  0. @Nd 1

MSC.Patran 2000 r2 15-May-05 21:38:02

Fringe: element stress results,gn.041, sv_gn041neu: Strevar, eldt-x-(NON-LAYERED) 

X

Y

Z

Figure 3: Displacement field before failure (left), equivalent plastic strains after first yield (middle) and
and before failure (right).

one side and loaded with the uniform pressure of 400 MPa on the other one. There is
imposed a symmetry condition in the bottom of the sample. Since the grains are elastic
the sample fails due to large plastic strains occurring in the elasto-plastic interfaces. The
displacement fields just before ”first yield” and before failure are shown in Figure 2 (right)
and in Figure 3 (left), respectively. There is demonstrated qualitative difference between
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Figure 4: Spatial failure of the interfaces, axonometric view (left) and side view (middle), displacement
vs load factor (right).

the two situations. The displacement field just before yielding exhibits discontinuities
along interfaces (Figure 2, right). It can be interpreted that the grains tend to slide
along the interfaces. Figure 3 (left) shows that the grains are strongly displaced and
rotated. The failure is spatial (Figure 4, left and middle), namely, the ductile material
of the interfaces is squeezed by the stiff grains and thrusted out of the sample. The
crucial place appeared to be a very short segment of the interface parallel to the loading
axis. The segment connects four other interfaces and is located between four grains.
The equivalent plastic strains distributions just after ”first yield” are shown in Figure 3
(middle) and before failure in Figure 3 (right). When comparing the Figures 3 middle
and right we may notice that the distribution of equivalent plastic strains is qualitatively
different after first yield and before failure. In the case of ”first yield” (Figure 3, middle)
the interfaces are getting plastic relatively uniformly and the already plastic interfaces
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are arranged approximately in the angle of 45o. The situation is different before failure
when the plastic strains are redistributed and strongly localized (Figure 3, right) close
to connections of the interfaces. The highest plastic strains are in the interface segment
corresponding to the one which is seen in Figure 4 (left, middle). This segment decides
about the failure.

The load-displacement curves are presented in Figure 4 (right). A horizontal displace-
ment along the load axis in the middle of the loaded face of the sample is chosen. We
consider three cases: elasto-plastic (thick crosses), elasto-plastic and included geometrical
imperfection (thin crosses), elasto-plastic and nonlinear geometry. A small geometric im-
perfection (void) is placed in the one of the interfaces in the middle of the sample. It can
be noticed that when concerning this particular model the influence of the imperfection
is not significant. The influence of the nonlinear geometry is important since it decides
about the load carrying capacity of the sample. The load factor of the failure load is 4.0.

The communication presents the problem of failure load and failure mode of an RVE
of a polycrystallic material. The most characteristic features of the failure mode are the
grains rotations and spatial displacing of the interface material.
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