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Summary. This work proposes a method for evaluating the increments of crack propa-
gation in two-dimensional problems of fracture mechanics. A displacement-crack growth
formulation based on the so-called ϑ-method is introduced for the case of rectilinear elas-
tic crack growth. The formulation can be generalized for simulating crack propagation in
ductile materials.

1 INTRODUCTION

Nowadays the computer codes for simulation of crack growth in brittle and duc-
tile materials (e.g. FRANC2D, FRANC3D, FRANC2D/L, ZENCRACK and, recently,
ABAQUS) are still affected by a typical limit of the computational fracture mechanics:
during crack propagation, the crack growth is not evaluated on the basis of a theoretical
formulation. In fact the crack increments due to given loads are: (a) assigned after the
determination of the direction of crack extension or (b) determined trough laws describing
fatigue crack growth models (e.g. the empirical Paris law) [1].

In [2] Fortino and Bilotta proposed a coupled displacement-crack growth method for
2D linear elastic fracture mechanics which allowed the increments of displacement and
crack growth relative to assigned load increments to be determined. The analysis used the
classical equations of linear elasticity and a J integral-based criterion of crack propagation.

In this work a coupled displacement-crack growth formulation based on the Gϑ pa-
rameter [3] is introduced. As pointed out in [4] and [5], a Gϑ-based approach is more
suitable than the J integral theory in order to simulate general problems of curvilinear
crack growth in ductile materials.
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2 A Gϑ-based displacement-crack growth formulation in elastic fracture

Let us analyze a two-dimensional elastic cracked body of domain Ω ∈ R2 and unit
thickness with a rectilinear crack propagation (see Figure 1). No traction is applied along
the surface of the crack. The material is assumed to be homogeneous and the body forces
are neglected. The ϑ-method, originally introduced by Destuynder and Djaoua in [3],
consists in a perturbation from the current configuration Ω to the updated configuration
Ωδa (see Figure 1):

Fδax = x + δaϑ , ∀x ∈ Ω (1)

where I is the identity operator and ϑ is a smooth vector valued function defined in Ω.
In particular, |ϑ| = 1 at the crack tip and ϑ = 0 on ∂Ω\Sf .
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Figure 1: Current (Ω) and perturbed (Ωδa) cracked domains; Sf = boundary with applied forces; Su =
boundary with applied displacements; λ = control parameter; f̂ = fixed load; δa > 0 = crack length
increment; δλ = load increment.

The integral equations governing the elastic cracked problem in the updated configu-
ration Ωδa are rewritten in the reference configuration Ω in the following way:





∫
Ω σδa : (∇v J−1

δa ) | Jδa | dΩ = (λ + δλ)
∫
Sf

f̂ · v dS ∀v ∈ V

∫
Ω Cσδa : τ | Jδa | dΩ − ∫

Ω(∇uδa J−1
δa ) : τ | Jδa | dΩ = 0 ∀τ ∈ Σ

(2)

where C represents the compliance tensor, the spaces V and
∑

are

V = {v ∈ (H1(Ω))2, v = 0 on Su}; Σ = {τ ∈ (L2(Ω))4| τ T = τ} (3)

and uδa = u ◦ Fδa; σδa = σ ◦ Fδa; Jδa = ∇Fδa = I + δa(∇ϑ)T .
By approximating the determinant of the Jacobian Jδa as | Jδa |≈ 1 + δa (divϑ) such

that (Jδa)
−T ≈ 1− δa(∇ϑ)T and substituting these expressions in (2), we find

uδa = u0 + δu + Ru; σδa = σ0 + δσ + Rσ (4)

where (u0, σ0) is the solution in the reference configuration and δa−1(||Ru||V +||Rσ||Σ) → 0
as δa → 0. The increments (δu, δσ) are the unique solution in V × Σ of the following
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problem (see proof in [3]):





∫
Ω δσ : ∇v dΩ = δλ

∫
Sf

f̂ · v dS + δa
∫
Ω s : ∇v dΩ ∀v ∈ V

∫
Ω Cδσ : τ dΩ− ∫

Ω∇δu : τ dΩ = δa
∫
Ω r : τ dΩ ∀τ ∈ Σ

(5)

with r = −1
2
(∇u0∇ϑ + (∇u0∇ϑ)T ) and s = σ0∇ϑT − (divϑ)σ0.

The new idea of this work is to use transformation (1) for writing an incremental
displacement-crack propagation problem in the unknowns (δu, δa). At this end, eliminat-
ing the stresses we get δσ = E[ε(δu) + δa r], and (5) reduces to

∫

Ω
Eε(δu) : ε(v) dΩ− δa

∫

Ω
t : ∇v dΩ = δλ

∫

Sf

f̂ · v dS ∀v ∈ V ; δa > 0 (6)

where t = s−Er. In [3] the energy release rate of the cracked body during the perturbation
from Ω to Ωδa is proved to be equivalent to

Gϑ =
1

2

∫

Ω
σ0 : ∇u0(divϑ) dΩ−

∫

Ω
σ0 : (∇ϑ)T∇u0 dΩ (7)

which coincides with the Rice J integral for all subdomains Ωϑ ∈ Ω. In case of stable
crack growth and flat resistance curves, the following conditions must be satisfied [1]:

Gϑ = Gf ; δGϑ = 0 (8)

where Gf is the energy fracture and δGϑ =
∫
Ω t : ∇(δu) dΩ − δa

∫
Ω Er : r dΩ represents

the first variation of (7). Then, the coupled displacement-crack growth system in the
unknowns (δu, δa) and will be





∫
Ω Eε(δu) : ε(v) dΩ− δa

∫
Ω t : ∇v dΩ = δλ

∫
Sf

f̂ · v dS

∀v ∈ V ; δa > 0
− ∫

Ω t : ∇(δu) dΩ + δa
∫
Ω Er : r dΩ = 0

(9)

and, in operator form: [
A BT

B C

] [
δu
δa

]
= dλ

[
F
0

]
(10)

System (10) has been implemented and solved into the FEM computer code ELMER
(CSC-Scientific Computing Ltd., Espoo, Finland) for problems of linear elastic fracture
mechanics. Some results are shown in Figure (2).

3 Remarks and future work

The solution of system (10) inside a suitable algorithm including a remeshing or a
non-remeshing technique, allows to determine the increments of displacement and crack
growth relative to assigned load increments during rectilinear crack extension. The scheme
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Figure 2: Center cracked plate in tension (one-quarter of geometry); dimensions = 20×20; E= 270; ν=0.3;
initial crack length=10; λf̂ = 100; SI units. Plane strain state. Quadratic triangular FE. Displacements
and mesh (left), stresses σy (right) after the first step of a Gϑ–based analysis; δλ = 0.01.

of the algorithm can be the same as that introduced in [2]. The method can be extended
to elastic curvilinear crack growth by using the approach proposed by Rudoy in [4].

At present the authors are generalizing the proposed Gϑ-based formulation in order to
simulate crack propagation in ductile materials. In particular, to obtain the equivalent
elastic-plastic of system (9), systems (2) and (5) have to be modified using the classical
equations of incremental elastoplasticity. A first attempt to extend the ϑ-method to
incremental elastoplasticity was proposed in [5] by Debruyne who introduced a fracture
criterion but did not calculate the increments of crack growth during crack extension.
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