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Summary. Three models of elastoplasticity are compared on the basis of a classic ex-
ample of a cyclically loaded notched bar. The numerical solution displays a monotonous
dependence of the residual plastic strain, at the notch root, on the uncertain input material
characteristics.

1 INTRODUCTION

The recent treatise1 deals in a broad context with the solution sensitivity to perturbed
input conditions for a variety of engineering problems. Based on the earlier publications by
the second author of this paper, the existence of a worst scenario was proven for three types
of the criterion functional related to a small strain elastic-plastic continuum formulation,
employing isotropic, kinematic and mixed hardening rules. Later on, Hlaváček, Plešek and
Gabriel applied these material models to a typical problem of plasticity, a cyclically loaded
notched bar, subject to variations of the yield stress, hardening modulus and the elastic
parameters2. The influence of the input variation on the normal stress component in the
plastic zone was investigated; with the main results also found in the above mentioned
book. In this work the attention was focussed on a more sensitive and, perhaps, from
the engineering view point even more important quantity, the maximum residual strain
at the notch root.

2 WORST SCENARIO METHOD

One of the simplest non-probabilistic procedures is the method of worst scenario
(WSM) alias anti-optimization. It consists in the three following steps: (i) choice of
a criterion functional Φ(A, u(A)) in accordance with the technical requirements, where
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u(A) denotes the solution of the mathematical model for input data A; (ii) definition of
a set Uad of admissible input data, and (iii) solving the maximization problem

max
A∈Uad

Φ(A, u(A)). (1)

For an analysis of the method in various fields of physics and engineering we refer to
monograph1. In the present paper we restrict ourselves to an illustrative example involv-
ing three well-known models of elastoplasticity, namely the perfect (ideal) plasticity and
models with isotropic or kinematic hardening.

In papers3,4,5 the existence of a worst scenario, i.e. a solution of problem (1), was
proven for three types of the criterion functional. Approximate solutions based on the
finite element discretization in space and backward differences in time were introduced
in Ref.3,4 together with some convergence analysis. The case of kinematic hardening was
treated in Ref.1-Section 23. Another formulation of the model with isotropic hardening
was analyzed in paper5.

Here we will display numerical solutions of problem (1) for the classic plane-stress
example of a cyclically loaded notched inelastic bar. The numerical solution of problem
(1) consists heavily in the sensitivity analysis, i.e. in the analysis of properties of the
mapping

A 7→ Φ(A, u(A)) for A ∈ Uad. (2)

If this mapping happens to be monotonous in some sense, the solution to problem (1) is
obvious since the maximum is then attained on the boundary of the set Uad. Fortunately,
this will be the case for all the three plasticity models under consideration.

3 INCREMENTAL CONSTITUTIVE MODELS

Details of the mixed hardening elastoplastic model as it is implemented in the finite
element package PMD and used in this study are presented in Ref.6. For the current
purposes the model is specialized to von Mises’ linear hardening J2-theory.

Throughout the text, the usual notation is used: σ, S and h denote the stress tensor,
its deviatoric part and the backstress tensor, respectively; ε, εp are the total strain and
the plastic strain tensors; H is the hardening modulus H = (E − Et)/EEt, where E
is the Young modulus and Et is the slope of the uniaxial stress-strain curve; and λ, G
are the Lamé constants. Dots superimposed over the characters denote (material) time
derivatives while the double dot symbol means the inner product of two second-order
tensors, e.g., S : S = SijSij. All the computations were performed within small strain
theory.

The von Mises effective stress with the inclusion of backstress is defined as

σe =
√

3
2
(S− h) : (S− h) (3)

The yield condition
σe = σ̄Y (εp) (4)

2
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permits both isotropic and kinematic hardening, making the subsequent yield stress σ̄Y

dependent on equivalent plastic strain εp whose increment is given by

ε̇p =
√

2
3
ε̇p: ε̇p (5)

For perfectly plastic or kinematic hardening model the initial yield stress σY must be
substituted, i.e. σ̄Y = σY = const.

Incremental constitutive equations describing the evolution of kinematic variables can
be summarized as follows.

ε̇p =
3

2

ε̇p

σe

(S− h) (6)

ḣ = µ̇(S− h) (7)

ε̇p =
3G

H + 3G

S : ε̇

σe

(8)

µ̇ = H
ε̇p

σe

(9)

Note, that in the J2-theory the Prager and Ziegler hardening rules coincide.
Finally, having plastic strain computed, the stress tensor is determined from the gen-

eralized Hooke’s law as
σ = λtr(ε− εp)I + 2G(ε− εp). (10)

The tangent stiffness-radial corrector scheme is employed to integrate the evolution
equations (6)–(9). In this algorithm, time derivatives are replaced with small increments
as in the Euler forward method, followed by the radial return correction performed on
the stress tensor components only so that the yield condition (4) is exactly satisfied. The
method possesses unconditional numerical stability and convergence for any convex yield
criterion. Refer to paper7 for details.

4 TEST PROBLEM

A flat bisymmetric notched inelastic bar, whose geometry, material properties, and
pulse loading data were given in Ref.2,6, was analyzed for three considered models of
elastoplasticity: perfect plasticity, isotropic hardening and kinematic hardening models.
The estimated discretization error of numerical analyses (less than 1%) was significantly
smaller than the scatter of experimental data (about 10%).

When the average stress in the plastic zone was taken as a WSM criterial function,
the results were little sensitive to the input data variation2. Much better sensitivity was
achieved by detection of the residual plastic strain measured by the strain gauge placed
directly at the root of the notch. The main points of this analysis and some general
observartions are summarized below.
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5 CONCLUSIONS

• As in the paper2 for a stress indicator, the sensitivity mapping for residual plastic
strain turned out to be monotonous so that the maximum of the criterial quantity
was attained on the boundary of the admissible set.

• Comparing to the earlier analysis, this admissible set had to be substantially en-
larged to contain the results based on the new criterion. More specifically, much
larger interval of the input yield stress variation had to be considered.

• The present numerical experiments show, on the one hand, that WSM must be
used with care, bearing in mind which quantity sensitivity has been studied. On
the other hand, WSM may act as a powerful tool to estimate the validity and scope
of the constitutive model used. For example, one might readily simplify analysis,
resorting to less demanding material models if the error/scatter predicted by WSM
can still be considered acceptable.
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