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Summary. This paper deals with the numerical modelling of fractures in bidimensional elas-
ticity. Using the XFEM method, we suggest some improvements we have developped in order to
obtain an optimal rate of convergence even if high order polynomial functions are used in the
FEM discretization.

1 INTRODUCTION

Computer simulation of fracture processes remains a challenge for many industrial modelling
problems. In a classical finite element method, the non-smooth displacement near the crack tip
is captured by refining the mesh locally. The number of degrees of freedom may drastically
increase, especially in three dimensional applications. Moreover, the incremental computation
of a crack growth needs frequent remeshings. Reprojecting the solution on the updated mesh is
not only a costly operation but also it may have a troublesome impact on the quality of results.

In the last few years, Moës, Dolbow and Belytschko1 introduced a numerical methodology
which has been developed by the name of XFEM - eXtended Finite Element Method. Not only
finite elements are enriched with the asymptotic crack tip displacement solutions, but also with
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a step function which takes into account the jump of the displacement across the crack. Then,
the finite element mesh can be defined independently of the crack geometry. The partition of
unity chosen to localize the enrichment functions is linked to the mesh and is generally defined
using linear shape functions.

An advantage of the XFEM method is to obtain more accurate numerical results than clas-
sical finite element one. However, the rate of convergence remains of order

�
h with respect to

the mesh parameter h and is independant of the degree of the finite element method (see Fig. 1
and Stazi et al2). Then, the aim of this paper is to introduce some improvements to this method
in order to reach the optimal rate of convergence.
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Figure 1: Convergence comparison of classical finite elements and XFEM

2 A NEW ENRICHMENT METHOD NEAR THE CRACK TIP

2.1 The classical XFEM approach

Let us consider a bidimensional linear elasticity problem on a cracked domain. On a regular
triangulation of the (non-cracked) domain Ω, we define the set of vector valued functions ϕi

which form a basis of the discrete space. The associated finite element function is supposed to
be the classical Lagrange polynomial of order k.

In the classical XFEM1, the enriched space is built with the following functions :

vh � N

∑
i � 1

aiϕi � ∑
i � IH

biHψi � 4

∑
j � 1

∑
i � IF

ci jFjψi (1)

where ψi are the basis functions of the vector P1 FEM, IH is the set of nodes whose basis func-
tions support is entirely splitted by the crack, so which are enriched by the global discontinuous
step function H. This function is equal to � 1 on one side of the crack and � 1 on the other.
Finally, IF is the set of nodes which contain the crack tip in the (interior of) support of their
basis function. Finally, the expressions of Fj are, in polar coordinates relatively to the crack
tip :
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F1 � �
r sin

θ
2 	 F2 � � r cos

θ
2 	 F3 � �

r sin
θ
2

cosθ 	 F4 � � r cos
θ
2

cosθ (2)

2.2 First improvements

First, an original quadrature rule was defined, in order to obtain a better accuracy in the
computation of the elementary stiffness matrix for triangles which contains the crack tip. In

fact, these integrals can be written as : 

T

∇ � Fi ϕ j �� ∇ � Fk ϕl � dx. It is easy to see that ∇ Fi has

a singularity of order r � 1 � 2 and that expressing the previous integral in polar coordinates will
cancel this singularity. So, in practice, for numerical integration, the triangle, which contains
the crack tip, is divided in a few number of subtriangles such that the crack tip is a vertex of
them. On each subtriangle, a polar integration is used. We show3 that this integration method
gives excellent results with a very lower number of integration points than a classical Gauss
quadrature.

Second, when Pk polynomial functions are used for the classical FEM (first term of (1)), the
same shape functions will be used for the approximation of the jump displacement : ∑

i � IH

biHψi

will be replaced by ∑
i � IH

biHϕi .

Finally, in the classical XFEM method, only the nodes the nearest to the crack tip are en-
riched; consequently the support of the additional basis functions vanishes when h goes to zero.
So we propose to enrich a whole fixed area around the crack tip independently of h. In practice,
the size of this area is about 1 � 10th of the domain size.

With all this modifications, the expected optimal rate of convergence is nearly reached (see
Fig. 2). But the condition number of the linear system and the number of unknowns increase3 .
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Figure 2: Convergence of XFEM with a fixed enrichment area
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2.3 Bonding condition

So, a bonding condition is introduced on the enrichment area around the crack tip : for each
singular shape function, the equality of the corresponding degrees of freedom is prescribed.
Doing so, the total number of unknowns is roughly the same as the classical FEM, even if
the size of the stiffness matrix is increased. Moreover, the condition number of this matrix is
drastically improved. Unfortunately, the numerical tests show an important lake of optimality.
A simplified analysis shows that this is due to the transition layer between the enriched area and
the rest of domain3.

To overcome it, we propose a nodal matching condition at the interface and numerical tests
show that the optimal convergence rate is then obtained (see Fig. 3) even for high order poly-
nomial functions.
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Figure 3: Convergence of XFEM with the pointwise matching condition

All the numerical tests concern a bidimensional plate, using degree one, two and three poly-
nomials for the classical FEM approximation, on triangular meshes, in the frame of the Getfem
library4.
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