
VIII International Conference on Computational PlasticityCOMPLAS VIIIE. Oñate and D.R.J. Owen (Eds)c©CIMNE, Barcelona, 2005FINITE STRAIN MODEL FOR ELASTOMER�ALUMINIUMCONTACT INTERFACE IN FORMING PROCESSESMariela Luege , Bibiana M. LuccioniInstituto de Estructuras, Universidad Nacional de Tucumán, CONICETAv. Roca 1800, S.M. de Tucumán, 4000 Tucumán, Argentinae-mail: mluege@herrera.unt.edu.arKey words: Friction law, lubrication, computational contact, forming processesSummary. In this paper we introduce a phenomenological friction law for the continuoussliding of a polymer on a surface of aluminum for lubricated and dry conditions as itoccurs in metal forming processes. The contact model is developed within the frameworkof continuum thermodynamics of irreversible processes with internal variables and for largestrains assuming the contact area as a material surface. The model is able to describe theboundary friction map proposed in [1].1 INTRODUCTIONThe frictional behaviour of a surface sliding with respect to another, separated by alubricant �uid of viscosity ηb, and with contact area A is usually described by a single curvecalled the Stribeck curve (see Figure 1(a)). This curve assumes AV ηb/D as the relevantparameter in de�ning the friction force F . As a result, decreasing the �lm thickness D byone-half has the same e�ect as doubling the sliding velocity V . However, such behaviouris not veri�ed in experiments. On the basis of experimental �ndings, [1] propose the morereliable friction map of Figure 1(b). The friction force is de�ned as function of V andis represented in terms of a family of curves parameterized by D or the applied normalload L. Distinguishing features of these curves are the existence of three regimes: bulk,intermediate and pure frictional. The bulk regime (D = 250�180nm) is characterizedby a viscous response and a constant viscosity equal to the viscosity of the lubricant. Inthe pure frictional regime a Coulomb like behaviour is noted, whereas in the intermediateone both the aspects are present with the existence of a value of the sliding velocity Vdepeding on D (or on L) that signs the transition to the viscous regime (see Figure 1(b)).Aim of this note is to develop a thermodynamically consistent model that repro-duces the above experimentally observed behaviour and apply it to model the elastomer�aluminium interface.2 KINEMATIC AND THERMODYNAMICAL FRAMEWORKFor the kinematic representation of the contact we follow the notation and de�nitionof [4, 5]. Let Bi, i = 1, 2, denote the two bodies that come in contact, Ωi ∈ R
3, i = 1, 2,the respective reference con�guration, and Γi

c the part of ∂Ωi that at the time t are in1
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(a) (b)Figure 1: (a) Stribeck curve in the case of lubrication. (b) Boundary friction mapcontact, the contact conditions are parameterized by X ∈ Γ1
c by means of the closestprojection point Ȳ (X, t) = arg min

Y ∈Γ2
c

|ϕi
t(X) − ϕi

t(Y )| with ϕi
t deformation of Bi at time

t. Furthermore, with each point X we associate a slip advected bases (Tα) de�ned on thesliding surface Γ2
c [4, 5]. Given the slip distance gT (X) =

∫ t

ts

˙̄ξα Tαdτ , with ˙̄ξα componentsof the tangential relative velocity between X and Ȳ (X, t), ts the time when contact startsoccurring and t the current time, we consider the additive decomposition gT = ge
T + g

p
T ,with ge

T related to the elastic micro deformations part of the asperities, and g
p
T to thepermanent surface slip. Considering the contact area Γc as a material boundary [2, 3],the Clausius�Duhem inequality reads as

D = tN ġ + TT · LVgT − ψ̇ ≥ 0 , (1)with ψ the surface free energy, tN and TT the normal and tangential component of thecontact force, respectively, ġ the time derivative of the gap function, and LVgT the Liederivative of gT with respect to the velocity V (2) [4, 5]. A thermodynamically consistentmodel is obtained by giving the free energy ψ and evolution laws so that (1) is met.3 THE CONTACT MODELGiven the frictional behaviour of Figure 1(b), for D ≤ Dmin we consider a Coulombtype behaviour with friction coe�cient µ = µd +
µs − µd

1 + 〈dg
p

T
− Ad〉+B

, where µs and µddenote the static and kinetic value, respectively, dg
p
T

=

∫ t

t0

|LVg
p
T |dt the accumulatedsliding distance, B an interface material parameter, and Ad a characteristic slip distance.For D ≥ Dmax the contact law is of a Newtonian �uid with viscosity ηb, whereas for

Dmin ≤ D ≤ Dmax on Γc the surface free energy is chosen as
ψ(g, gT , g

p
T ) =

1

2
KNg

2 + Ix≥0(g) + (1 − α)
1

2
KT |gT − g

p
T |

2 , (2)2
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(

〈D−Dmin〉+
Dmax−Dmin

)β

, 1

} if |LVgT | is lower than the limit value √

γDmax

ηbD
, oth-erwise α is set equal to one. The constant γ is a parameter that must be �tted to theexperimental results of Figure 1(b) further to some assumptions on the curves in thetransition regime, whereas β is a parameter depending on the current thickness. In (2)

Ix≥0 is the indicator function of R+ introduced to describe the impenetrability condition,whereas KN and KT are parameters as in [3].The state laws relating the state variables (g, gT , g
p
T ) to the dual thermodynamic forces

(teN , T
e

T ,W
p) are obtained from (1) as follows

teN −KN g ∈ ∂Ix≥0(g) ⇔ g ≥ 0 , (teN −KNg)g = 0 , teN −KNg ≤ 0

T e
T =

∂ψ

∂gT

= (1 − α)KT ge
T , Wp = −

∂ψ

∂gp
T

= T e
T .

(3)We introduce the dissipation potential
Φ(LVgT ,LVg

p
T ) = µ|teN ||LVg

p
T | + α

ηb

2
|LVgT |

2with µ de�ned as above. The evolution laws are then given as (tiN , T
i

T ,W
p) ∈ ∂zΦ(z;χ),that is,

tiN = 0, T i
T = α ηbLVgT , LVg

p
T = λ

Wp

|Wp|
,

F ≤ 0 , λF = 0 , λ ≥ 0 .

(4)with F := |Wp| − µtN ≤ 0 and use of duality has been invoked. From (4), it follows thatthe normal tension is elastic.4 NUMERICAL EXAMPLEThe proposed model is compared in this section with the experimental results of [1]obtained using the Surface Forces Apparat. After the two surfaces are brought intocontact, the upper surface is moved laterally and applies a normal pressure of 3.0E6 N/m2kept constant during the process. Three di�erent �lm thickness (D = 10, 30, 180nm)have been considered in the numerical simulation. The �nite element model is described inFigure 2(a). For the numerical integration of the contact law, we use the backward Eulerand a predictor/corrector algorithm to solve the resulting nonlinear algebraic system.The integration scheme is performed using the slip advected basis that ensures frameinvariance [4]. The model has been implemented in the dynamic explicit �nite elementcode STAMPACK with the penalty formulation to handle the unilateral contact.The constants used to de�ne the constitutive model are: Dmax = 250nm, Dmin = 0nm,
γ = 4.0E − 25 and ηb = 0.8Ns/m2. For D = 10nm and low velocities, the behaviour isalmost of Coulomb type with α = 0.039 and β = 1.0. ForD = 30nm and D = 180nm the3



Mariela Luege, Bibiana M. Luccioni
V

0.01 m

d

0.002 m

0.002 m

 1

 10

 100

 10  100  1000  10000  100000

Vi
sc

os
id

ad
 ef

ec
tiv

a, 
lo

g h
ef

f  [
N/

m
2  .

 s]

log |LV  gT|/ D

D=10.e-9:  Exp.
      Sim.

D=30.e-9:  Exp.
      Sim.

D=180.e-9: Exp.
       Sim.

D=250.e-9: Sim.

(a) (b)Figure 2: (a) Finite element model with plane strain quadrilateral elements using 4 Gauss points. (b)E�ective viscosity vs. Sliding velocity.interface parameters are α = 0.9967, β = 0.01 and α = 0.9999, β = 0.00001, respectively.For these values of D the in�uence of the frictional behaviour decreases with respect tothe viscous one, even though the e�ective viscosity ηeff = FD/(V A) is greater than ηb.Also, for values of the velocity greater than √

γDmax

ηbD
one recovers the viscous Newton typebehaviour. The latter is clearly also exhibited for D = Dmax.REFERENCES[1] G. Luengo, F.-J. Schmitt, R. Hill and J. Israelachvili. Thin �lm rheology and tribol-ogy of con�ned polymer melts: Contrasts with bulk properties. Macromolecules, 30,2482�2494, 1997.[2] N. Stroemberg, L. Johansson and A Klarbring. Derivation and analysis of a gener-alized standard model for contact, friction and wear. In. J. Solids Structures, 33,1817�1836, 1996.[3] M. Raous, L. Cangémi and M. Cocu. A consistent model coupling adhesion, frictionand unilateral contact. Comput. Methods Appl. Mech. Engrg., 177 383�399, 1999.[4] T.A. Laursen. Computational Contact and Impact Mechanics, Springer, 2002.[5] P. Wriggers Computational Contact Mechanics, Jhn Wiley & Sons, 2002
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