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Summary. In this paper we introduce a phenomenological friction law for the continuous
sliding of a polymer on a surface of aluminum for lubricated and dry conditions as it
occurs in metal forming processes. The contact model is developed within the framework
of continuum thermodynamics of irreversible processes with internal variables and for large
strains assuming the contact area as a material surface. The model is able to describe the
boundary friction map proposed in [1].

1 INTRODUCTION

The frictional behaviour of a surface sliding with respect to another, separated by a
lubricant fluid of viscosity 7,, and with contact area A is usually described by a single curve
called the Stribeck curve (see Figure 1(a)). This curve assumes AVn,/D as the relevant
parameter in defining the friction force F. As a result, decreasing the film thickness D by
one-half has the same effect as doubling the sliding velocity V. However, such behaviour
is not verified in experiments. On the basis of experimental findings, [1] propose the more
reliable friction map of Figure 1(b). The friction force is defined as function of V' and
is represented in terms of a family of curves parameterized by D or the applied normal
load L. Distinguishing features of these curves are the existence of three regimes: bulk,
intermediate and pure frictional. The bulk regime (D = 250-180nm) is characterized
by a viscous response and a constant viscosity equal to the viscosity of the lubricant. In
the pure frictional regime a Coulomb like behaviour is noted, whereas in the intermediate
one both the aspects are present with the existence of a value of the sliding velocity V'
depeding on D (or on L) that signs the transition to the viscous regime (see Figure 1(b)).

Aim of this note is to develop a thermodynamically consistent model that repro-
duces the above experimentally observed behaviour and apply it to model the elastomer—
aluminium interface.

2 KINEMATIC AND THERMODYNAMICAL FRAMEWORK

For the kinematic representation of the contact we follow the notation and definition
of [4, 5]. Let B, i = 1,2, denote the two bodies that come in contact, 2 € R3, i = 1,2,
the respective reference configuration, and T’ the part of 9Q' that at the time ¢ are in
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Figure 1: (a) Stribeck curve in the case of lubrication. (b) Boundary friction map

contact, the contact conditions are parameterized by X € T'! by means of the closest

projection point Y (X ,t) = arg min |¢!(X) — ©{(Y)| with ! deformation of B’ at time
Yer?

t. Furthermore, with each point X we associate a slip advected bases (T,,) defined on the
sliding surface I'? [4, 5]. Given the slip distance gr(X) = j;t £ Todr, with €% components
of the tangential relative velocity between X and Y (X,t), t, the time when contact starts
occurring and ¢ the current time, we consider the additive decomposition gr = g5 + g7,
with g5 related to the elastic micro deformations part of the asperities, and g% to the
permanent surface slip. Considering the contact area I'. as a material boundary |2, 3],
the Clausius—Duhem inequality reads as '

D=tng+Tr-Lygr —¢ >0, (1)
with ¢ the surface free energy, ty and 77 the normal and tangential component of the
contact force, respectively, ¢ the time derivative of the gap function, and Lygr the Lie
derivative of g7 with respect to the velocity V) [4, 5]. A thermodynamically consistent
model is obtained by giving the free energy ¢ and evolution laws so that (1) is met.

3 THE CONTACT MODEL

Given the frictional behaviour of Figure 1(b), for D < D,,;, we consider a Coulomb

type behaviour with friction coefficient y = ug + T <5i_ﬂjd> 5 where ps and g

denote the static and kinetic value, respectively, dgp = / |Lyghldt the accumulated

sliding distance, B an interface material parameter, and A, a characteristic slip distance.
For D > D,,.. the contact law is of a Newtonian fluid with viscosity 7,, whereas for
Dyin < D < Dy on T, the surface free energy is chosen as

1 1
(g, gr,gh) = §sz9 + Lozo(9) + (1 — @) 5 Krlgr — grl, (2)
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, B
with @ = min { (%) , 1} if |Lygr| is lower than the limit value ,/%, oth-

erwise « is set equal to one. The constant ~ is a parameter that must be fitted to the
experimental results of Figure 1(b) further to some assumptions on the curves in the
transition regime, whereas (3 is a parameter depending on the current thickness. In (2)
I,>¢ is the indicator function of R introduced to describe the impenetrability condition,
whereas Ky and K7p are parameters as in [3].

The state laws relating the state variables (g, gr, g7) to the dual thermodynamic forces
(t%, Zf, WP) are obtained from (1) as follows

ty —Kng€0lix(9) <920, (ty—Kyglg=0, ty—EKng<0

N

15 = ——

’ ogr

We introduce the dissipation potential

0 (3)

:<1_Q)KTQ§“ ) Wp:_aggzﬁ

(Lygr, Lvgh) = ulty||Lvgh| +a L |Lvgrl’
with p defined as above. The evolution laws are then given as (¢, 7, WP) € 9,P(z; x),
that is,
WP
Wl (4)

ty=0, Ti=amlygr, Lygh=2X\

F<0, MF=0, A>0.

with F := |WP| — uty < 0 and use of duality has been invoked. From (4), it follows that
the normal tension is elastic.

4 NUMERICAL EXAMPLE

The proposed model is compared in this section with the experimental results of [1]
obtained using the Surface Forces Apparat. After the two surfaces are brought into
contact, the upper surface is moved laterally and applies a normal pressure of 3.0E6 N/m?
kept constant during the process. Three different film thickness (D = 10, 30, 180 nm)
have been considered in the numerical simulation. The finite element model is described in
Figure 2(a). For the numerical integration of the contact law, we use the backward Euler
and a predictor/corrector algorithm to solve the resulting nonlinear algebraic system.
The integration scheme is performed using the slip advected basis that ensures frame
invariance [4]. The model has been implemented in the dynamic explicit finite element
code STAMPACK with the penalty formulation to handle the unilateral contact.

The constants used to define the constitutive model are: D,,,, = 250 nm, D,,;,, = 0nm,
v =4.0FE — 25 and 1, = 0.8Ns/m?. For D = 10nm and low velocities, the behaviour is
almost of Coulomb type with & = 0.039 and § = 1.0. For D = 30nm and D = 180 nm the
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Figure 2: (a) Finite element model with plane strain quadrilateral elements using 4 Gauss points. (b)
Effective viscosity vs. Sliding velocity.

interface parameters are a = 0.9967, 5 = 0.01 and o = 0.9999, 5 = 0.00001, respectively.
For these values of D the influence of the frictional behaviour decreases with respect to
the viscous one, even though the effective viscosity n.;y = F'D/(V A) is greater than 7.

Also, for values of the velocity greater than , /% one recovers the viscous Newton type

behaviour. The latter is clearly also exhibited for D = D,,,..
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