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Summary. The work detailed in this paper describes the implementation of a primal-dual
active set formulation for contact problems involving elastic-plastic material behaviour.
Since a contact algorithm based on an active set strategy does not deteriorate the condition
number, it seems to be particularly useful in the context of metal forming simulations
in combination with iterative solvers. The method has been implemented into the finite
element code LARSTRAN/SHAPE. 3D benchmark examples are given.

1 INTRODUCTION

The efficient treatment of contact problems is crucial to the performance of FE codes
in the context of metal forming. Efficient contact algorithms have been developed in
recent years [1, 5]. In contrast to the commonly used penalty-method, the primal-dual
active-set strategy, which is in the following referred to as active-set strategy, allows one to
adjust the geometric constraints of the tool exactly in a weak integral sense. The contact
stress can be easily recovered from the displacements in a variationally consistent way and
does not depend on a tuning parameter. Furthermore, the deterioration of the condition
number of the stiffness matrix which arises in penalty formulations can be avoided by the
active set strategy. Therefore, this strategy is very attractive for use in metal forming,
especially in combination with iterative solvers, as their convergence behaviour strongly
depends on the condition number of the system matrix. In the present paper, we adapt
the active set strategy for non-linear material-behaviour. The strategy was implemented
in LARSTRAN/SHAPE.

2 ACTIVE SET STRATEGY

As an example of a forming operation, we consider a rectangular workpiece which is
indented by a rigid, hemispherical punch (see Fig. 1(a)).
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Figure 1: Active set strategy

The basic idea behind the active set formulation presented here is to variationally
project the displacements from the tool onto the workpiece using certain Lagrange multi-
pliers, which define a dual, orthogonal base to the standard interpolation functions. For
details see [3].

We denote with S the set of potential contact nodes (see Fig. 1(a)). Let us consider
the load step where the tool comes in contact with the workpiece for the first time. The
iteration index for the active set loop is denoted by k. Ak ⊂ S is the active set, for which
the body is in contact with the obstacle and the complementary set Ik = S −Ak is called
the inactive set for all steps k ≥ 1 until convergence of the active set iteration. We con-
sider a patch of three elements to illustrate how the sets Ik+1 and Ak+1 are determined.
The situation in the k-th step is given in Fig. 1(b): Nodes {1,2} are active, nodes {3,4}
are inactive. The tool geometry is then adjusted to the active nodes, no matter if the
active set is already correct or not (see Fig. 1(c)). Now the nodal forces are used to
update the active and inactive node sets:

Ak+1 = {p ∈ Ik : p penetrates} ∪ {p ∈ Ak : p under compression}

Ik+1 = {p ∈ Ik : no penetration} ∪ {p ∈ Ak : p under tension}

Then the restrictions from the tool geometry are again adjusted to the correct active
nodes and the inactive nodes are released (see Fig. 1(d)). The step from (c) to (d) is one
step of the active set iteration which can be run parallel to the Newton iteration for the
nonlinear material law. This is possible because the search for the correct active set can
also be interpreted as a Newton iteration [2].
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3 NUMERICAL EXAMPLES

To demonstrate some of the difficulties which arise from using a penalty approach in
the contact, we consider a 2D-example, where a rigid punch is pressed into a linear elastic
rectangle.
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Figure 2: Comparison of the solution of the penalty method for different penalty parameters: Vertical
displacement (left) and contact stresses (right)
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Figure 3: Comparison of the solution of the penalty method with the solution of the active set strategy:
Vertical displacement (left) and contact stresses (right)

The bigger the penalty-parameter ε, the smaller the penetration and the more accu-
rately the contact stresses can be approximated. The quality of the active-set strategy
solution is only reached for very high penalty-values, which have the previously mentioned
drawback of deterioration of the condition number.

Initial 3D-tests have been performed using a model problem which is motivated by
surface rolling: A block of dimensions 1 × 1 × 0.5 is indented by a spherical tool which
moves along a closed loop. Two steps of the process are depicted. The block is discretized
with 4000 hexaedral volume elements. The sphere has a radius of 0.25 and penetrates the
block by 0.05.
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Figure 4: 3D contact example with elasto plastic material law
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