
VIII International Conference on Computational Plasticity 
COMPLAS VIII 

E. Oñate and D. R. J. Owen (Eds) 
© CIMNE, Barcelona, 2005 

ELASTIC-PLASTIC FRACTURE ANALYSIS FOR SURFACE CRACKS 
USING X-FEM 

 

T. Nagashima*and N. Miura† 
* Department of Mechanical Engineering 

Faculty of Science and Technology, Sophia University 
7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, JAPAN 

e-mail: nagashim@me.sophia.ac.jp 
 

†Materials Science Research Laboratory 
Central Research Institute of Electric Power Industry 
2-11-1 Iwado Kita, Komae-shi, Tokyo 201-8511, JAPAN 

Email: miura@criepi.denken.or.jp 

Key words: extended-FEM; elastic-plastic; fracture; J-integral. 
 
Summary. The present paper describes the application of X-FEM to stress analyses 
considering materially nonlinear behavior. Although the two-dimensional near-tip asymptotic 
displacement function has been used in X-FEM analyses of linear elastic problems with small 
deformation, it is not clear whether the near-tip function is valid for elastic-plastic problems. 
Therefore, the near-tip functions for a homogeneous isotropic crack are examined in 
nonlinear problems. As numerical examples, surface crack problems in elastic-plastic 
materials are solved. The J-integrals are evaluated in post processing of the results by 
elastic-plastic stress analysis based on X-FEM. The obtained results are compared with those 
obtained using conventional finite element analysis. 
 
 
1 INTRODUCTION 
The extended finite element method (X-FEM) [1][2], which can model the domain without 
explicitly meshing the crack surface, can be used to perform stress analyses for efficiently 
solving fracture mechanics problems. X-FEM has been applied to the evaluation of fracture 
parameters, such as stress intensity factor (SIF), in the field of linear elastic fracture 
mechanics (LEFM). Moreover crack propagation simulations have been performed efficiently 
using X-FEM in conjunction with the level set method [2]. On the other hand, consideration 
of nonlinearity in structural analyses is often required for practical engineering problems. For 
example, an evaluation of the J-integral of a crack in the structure of an elastic-plastic 
material requires materially nonlinear analysis. In X-FEM analysis, the interpolation function 
is enriched with the Heaviside function to model the discontinuity of the displacement field 
along the crack surface. However, when the crack tip is located inside an element, the 
interpolation function enriched with the Heaviside function cannot yield the appropriate 
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displacement field perfectly. In such a case, a near-tip function including a branch function 
should be introduced in order to enrich the element containing the crack tip. Thus far, the 
near-tip asymptotic function for a homogeneous isotropic crack has been used in X-FEM for 
solving linear elastic problems. However, these near-tip functions are obtained for isotropic 
elastic problems under small deformation conditions. Therefore, it remains unclear as to 
whether these functions can be applied to solve materially nonlinear problems. 

In the present study, in order to determine the possibility of applying nonlinear X-FEM 
analysis to materially nonlinear problems, crack modeling using enrichment functions is 
examined. The formulations for X-FEM analysis considering materially nonlinear behavior 
with small deformation are shown herein. Elastic-plastic X-FEM analyses for a three-
dimensional body with a surface crack are performed. The numerical results are compared 
with results obtained using conventional FEM, and the distribution of enriched nodes, which is 
used for enrichment near the crack tip, is examined. 

 

2 NUMERICAL METHODS 

2.1 Finite element discretization [3] 

In the present study, the small deformation problem considering the elastic-plastic constitutive 
equation is treated. The elastic-plastic analysis by X-FEM conducted in the present study uses 
the framework of the incremental method within the limitation of small deformation. Namely, 
the principle of virtual work described by the Cauchy stress tensor and the linear strain tensor 
is discretized using finite elements, and the solution is obtained iteratively using the Newton-
Raphson method. In the iterative process, the backward Euler scheme is utilized to determine 
the incremental stress from the incremental displacement by considering the elastic-plastic 
constitutive equation. 

The incremental displacement ∆U(i) at  iteration i is obtained by solving the following 
equations: 
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where 
EP

t K  is the linear strain incremental stiffness matrix at time t, 

Ut  is the vector of the dislacement at time t, 

Ft  is the vector of the external forces at time ,t 

LB  is the linear strain-displacement transformation matrix, 
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Qt  is the vector of the nodal forces equivalent to the element stresses at time t, 

σ̂t  is the vector of Cauchy stresses at time t, and 

EPĈ  is the stress-strain elastic-plastic material property matrix at time t. 

2.2 Interpolation function 
In the present study, a planar surface crack in an elastic-plastic material is assumed. The 
analyzed domain is defined in Cartesian coordinates (x, y, z), and the planar surface crack is 
assumed to be on the x-y plane. In X-FEM, the approximate displacement function uh of the 
distributed displacement u near a delamination is expressed as: 
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where NI is the interpolation function of an eight-node linear element used in the formulation 
of the conventional FEM, C and J denote the node set considering the asymptotic solution and 
the discontinuity of displacement near a crack, respectively, and uI, aI

k, and bI denote the 
vectors of freedoms assigned to each node. Here, C ∩ J = φ is satisfied. In addition, γi (i =1,4) 
are the near-tip functions, which consider the discontinuity near the crack tip, H(x) is the 
Heaviside function used to express the discontinuity of the displacement on a crack, and f(x) 
is a level set function that is introduced in order to express the shape of the front tip of the 
crack using nodal information. The level set function f(x) is described below. 

In the present study, the level set function f(x) used in Eq. (3.2) is defined as follows: 
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where Γ represents the curved front line of the crack, x  is a point on the curved line Γ, and 

)(xn  denotes the vector orthogonal to the curved line Γ at point x .  
This function is called the signed distance function, and the absolute value of f is the 

distance between the point and Γ. 
In the present study, the near-tip function γi, which is determined from the asymptotic 

solution of a crack in a homogeneous isotropic material, is defined as follows: 
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where r and θ are the polar coordinates in a plane defined near the crack tip, and 
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3 NUMERICAL EXAMPLES 

An elastic-plastic body with a planar surface crack under tensile loading, as shown in Fig. 1, 
was analyzed using X-FEM. The structured finite element mesh (40 x 40 x 40) shown in Fig. 
2 was employed. A crack with an arbitrary front tip shape can be modeled by various 
enrichment nodes. In the calculation, the three types of models shown in Fig. 3 were used. 
The crack opening displacement and the J-integral at the center of the crack were evaluated. 
The J-integrals calculated for various loads are shown in Fig. 4.  
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Figure 1: Single-edge crack problem                                Figure 2: Finite element mesh 
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Figure 3:  Crack modeling                                      Figure 4:  J-integral vs. applied load 

4 CONCLUDING REMARKS 

The present paper presents a basic study of the application of X-FEM to elastic-plastic 
problems and describes the results of a three-dimensional elastic-plastic analysis using X-
FEM. The effect of the distribution of enrichment nodes near the crack on the numerical 
results was examined.  
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