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1 INTRODUCTION

A possible drawback of the first order homogenization technique is that it does not account for the
absolute size of the microstructure, thus failing to represent geometrical size effects. Moreover,
an ambiguity concerns the assumption of uniform macroscopic fields across the microstructure,
which works well in regions where the macroscopic fields vary smoothly, but it does, in fact, not
work well in regions where steep gradients occur at e.g. corners, boundary layers, cracks, inclu-
sions etc. The proper consideration of these issues requires (at least) a second order homogeniza-
tion technique along with a matching higher order continuum formulation. As to the exploitation
of generalized continuum formulations (such as micro--polar, strain--gradient), which all have the
effect of introducing amaterial length scale into the constitutive model, quite much work hasbeen
presented in the literature, cf. [1] and references therein. In the present paper we present a higher
order homogenization scheme based on non--linear micro--polar kinematics representing the
macroscopic variation within a Representative Volume Element (RVE) of the material. This ap-
proach is similar the to the second gradient continuum formulations presented e.g. in ref. [1].

2 SECOND ORDER HOMOGENIZATION -- MICROPOLAR THEORY

Let us consider the situation where a solid component occupies the undeformed configuration
B0. During deformation the component enters it deformed configuration B, in accordance with
the (macroscopic) non--linear deformation map φM[XM]. Associated with the deformation of the
material point XM, we thereby consider an RVE with the width W and height H (in 2D) resolving
the miniscale.
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The averaging within the RVE is carried out by considering the heterogeneousmaterial within the
RVE as a first order continuum, obtained from the mapping, cf.Kuosnetzova et al. [1], written as

x= FM ⋅ X+
1
2GM :

(X X)+ φ[X] with GM= (φM∇X)∇X= FM∇X (1)

where the actual macro--micro transition is considered by imposing conditions on the mi-
cro--problem based on the macroscopic deformation tensor FM and its gradient GM. Moreover,
φ[X] is the microstructural fluctuation field.
A basic requirement in the homogenization procedure is to conserve momentum balance within
the RVE, which may be stated for the static case and in the absence of body forces within the RVE
as

St1 ⋅ ∇X= 0 ∀X in V0⇔ 
V0

St1 : δFdV0= 
Γ0

t1 ⋅ δx dΓ0 (2)

where St
1 is the microfirst Piola Kirchhoff stress, V0, Γ0 are the volumeand boundary of theRVE.

On the basis of the micro--polar kinematics, let us first recall the macroscopic deformation gradi-
ent described in terms of the independent micro--polar rotation RM and a micro--polar right
stretch tensor UM written as FM= RM ⋅ UM.
Ascompared to the Taylor series expansion above, wenow make the restriction that FM≈ RM in
the second order term to obtain the matching kinematics of the RVE with the micro--polar theory.
Hence, we obtain the following formulation of the kinematics of the RVE:

x= FM ⋅ X +
1
2
RM∇X ⋅ X ⋅ X+ φ[X] (3)

It appears in view of (2) (after some derivations) that this condition may be formulated in the
present context of micro--polar theory as

1
V0

V0

St1 : δFdV0= τ
t
M : δlφM− spn[δθM] +Mt1M : δKM (4)

where τt
M is the non--symmetric homogenized Kirchhoff stress tensor, M

t
1M is second order ho-

mogenized couple stress tensor. Due to the energy conjugation between stress and deformation
variables in the micro--polar theory, we identify the following homogenized stress measures:

-- The homogenized Kirchhoff stress tensor τt
M

τtM=
1
V0

γ0

t1 x
1stdΓ0 with x

1st= FM ⋅ X (5)

-- The homogenized couple stress tensor M
t
1M

Mt1M= 1
V0

Γ0

Q XdΓ0 with Q= axl[t1R X] and t1R= R
t
M ⋅ t1 (6)
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EXAMPLE: MIXED 1st ORDER AND MICROPOLAR DEFORMATION

In the numerical example we consider the influence of the combination first order deformation
and second order micropolar curvature on the response of the periodic heterogeneous micro--
structure given in Fig. 1, with a void of spherical shape. The material model of the micro--constit-
uent is governed by the stored energy function of Neo--Hookean type written as

W[C
^
, J]= G(1 : C^− 3)+ 12K(J− 1)

2 with C
^ = J−

2
3Ft ⋅ F (7)

where C
^

is the isochoric right Cauchy--Green deformation tensor. Moreover, G and K are the
shear and bulk moduli of the micro--material. The soft inclusion is modeled by assuming that it
obeys the same material law but has has 20 times lower stiffness, cf. Fig. 1. It is also assumed that
the solid is planar from the micro--polar viewpoint, whereby the axial vector of the micro--polar
rotation tensor RM is a priori associated with the out--of--plane E3--vector, i.e. θM= θM E3. As
to the applied macroscopicdeformation, we shall consider the first order deformation represented
by simple shear, which may be written with the plane strain assumption for the solid as

FM=



1
0
0

tan[γM]
1
0

0
0
1



, K
3

M= KθM∇XθM with KθM= spn[E3] (8)

where γM is themeasure of the amount of shear. Moreover, Finite element discretization is used to
resolve the fluctuation field φ[X] with Dirichlet boundary conditions along the external bound-
aries of the RVE.
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Figure 1 Schematic of periodic RVE with void of specical shape

In this example the situation of pure micro--polar deformation is considered. The loading is there-
by defined by the scenario: γM= 0 , θM= 0 and θM,1= θM,2= 0− 2, applied proportion-
ally in 20 load steps. In the present case we consider the RVE sizes β= {0.1, 0.5, 0.7, 1}. The
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result is shown in Fig. 2a for the homogenized couple stress, and in Fig. 2b the deformed configu-
ration in the final load step β= 1 is shown. It noted that a size dependent stiffening response
obtained.
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Figure 2 a) Couple stress response versus prescribed deformation for
pure micro--polar deformation, b) Fluctuation field φ[X] within RVE at final load step.

3 CONCLUDING REMARKS

In the present paper we developed a homogenization procedure in context of micro--polar contin-
uum, considered as a restriction of the second gradient theory. It appears that the actual averaging
is obtained with respect to the ordinary homogeneous modes and in addition the higher order cur-
vature mode represented as a second order tensor. We emphasize the close relation between the
micro--polar and second gradient continuum descriptions.
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