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1 INTRODUCTION

In chase of weight reduction, structural foam can be used in vehicle body components.
The primary goal is then to maintain crashworthiness, i.e. stiffness and energy absorption
of the load-bearing structures, while saving weight. Computer crash simulation is used as
a natural part of the vehicle design process and for foam-type material to be considered for
utilization, a proper constitutive model is needed. In the effort to provide such model, a
large deformation isotropic hyperelasto-viscoplastic constitutive model for foam materials
has been developed. With foam being a mixture of a solid and a gas phase, the Theory
of Porous Media is used to model foam phenomenologically at the macroscopic level.
Foam materials in compression show a characteristic increase in stiffness, why hardening
is modeled connected to the logarithmic compaction strain. This tends to infinity as
the point of compaction is approached. Since the response of many foamed polymers is
deformation-rate dependent, a viscoplastic flow rule is utilized. Furthermore, the yield
surface is initially pressure sensitive, while as compaction develops, it hardens towards
pure shear dependency. The constitutive model has been implemented into the finite
element software LS-DYNA and verification simulations have been made1.

2 CONTINUUM MECHANICAL RELATIONS

The Theory of Porous Media (TPM)2,3 is used, describing the foam as a mixture of
solid and fluid constituents denoted by α = {s, f}. The volume fractions nα(x, t) denote
the ratio of local constituent volume to mixture volume. Moreover, each spatial point
x of the current configuration is simultaneously occupied by the material particles Xα

where the two constituents relate to different reference configurations, i.e. Xs 6= Xg. The
deformation gradient and the Jacobian associated with the solid skeleton material are
then F = ϕ(Xs) ⊗ ∇ and J = det(F) respectively.
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2.1 Limitations

The first limitation is the assumption that the solid material is incompressible. The
other limitation regards how the phase interaction is handled. Foam material can either
have closed cells, open cells or a combination of both. For the case of closed cells, whereby
the air cannot escape from the pores, the velocity of the gas relative to the solid is zero.
Then the gas pressure can be described via the ideal gas law. Open cells lead to gas flow
through the skeleton structure. This interaction may become significant for very high
deformation rates. However, in the present paper it is assumed that the foam has closed
cells and the boundary conditions will result in little gas pressure so that the drag force
will be insignificant. It is therefore disregarded.

3 MODELING THE EFFECTIVE STRESS

The kinematics are specified in terms of the solid phase material, for which the de-
formation gradient is split multiplicatively into elastic and inelastic (plastic) portions F̄

and Fp, respectively, as F = F̄ · Fp. Consequently, the right Cauchy-Green deformation
tensor is obtained as C = Ft · F = Ft

p · C̄ · Fp, with the elastic component C̄ = F̄t · F̄.
The dissipation D in the cellular solid becomes:

D =
1

2
S̄ : ˙̄C + T̄ : L̄p − ns

0ρ
sΨ̇ ≥ 0 with T̄ = C̄ · S̄ and L̄p = Ḟp · F−1

p (1)

where S̄ is the ”intermediate” 2:nd Piola Kirchhoff stress, T̄ the Mandel stress and L̄p

the plastic ”velocity gradient”.
In modeling the Helmholts free energy of the solid material Ψ, it is assumed to be a

function of the elastic deformation C̄ and the hardening variable κ. This leads to the
constitutive state equations and the reduced dissipation:

S̄ = 2ρ̂s
0

∂Ψ

∂C̄
, K = −ρ̂s

0

∂Ψ

∂κ
and D = T̄ : L̄p + Kκ̇ ≥ 0. (2)

According to the principle of maximum dissipation, the associated visco-plastic flow
rule of Perzyna type4 is written as:

L̄p =
η

t∗
N̄ with N̄ =

∂Φ

∂T̄
and κ̇ =

η

t∗
N̄ with N̄ =

∂Φ

∂K
, (3)

where η = (< Φ >/σc)
n is the overstress function. σc and n are the Norton creep para-

meters.

4 PROTOTYPE MODEL

4.1 Solid phase compaction

The solid phase compaction is represented in terms of the logarithmic compaction
strain β = − log(ng/ng

0), where ng and ng
0 are current and initial gas content, respectively.
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β is split into recoverable and irrecoverable parts:

β = βe + βp = − log(
1

J̄

J̄ − ns
p

1 − ns
p

) − log(
1 − ns

p

1 − ns
0

) (4)

It is noted that β = 0 in the initial stage before deformation, whereas β → ∞ when
complete compaction occurs, i.e. at the point of compaction. Dilation from the initial
configuration is obtained whenever β < 0.

4.2 Isotropic elasticity

In order to formulate the volumetric stiffening effect of the foam as the material
compaction is increased, we propose the isochoric/volumetric split of the free energy
Ψ = Ψiso + Ψvol, where we introduce the argumentation:

ρ̂s
0Ψ

iso(C̄) =
1

2
G(1 : ˆ̄C − 3) and ρ̂s

0Ψ
vol(βe, βp) =

1

2
Kbβ

e2 +
1

2
Hbβ

p2 (5)

where G and Kb are the shear and bulk parameters of the solid cellular material and
Hb > 0 represents hardening associated with the inelastic compaction βp. The first part
in (5) is just the standard isochoric energy contribution, whereas the second volumetric
part describes in particular the elastic stiffening effect of the material as J̄ approaches
the inelastic portion of the solid phase volume fraction ns

p. A major motivation for the
expression in (5) is the compaction condition ns ≤ 1, leading to βe > 0 or ns

p ≤ J̄ . Indeed
the situation that J̄ → ns

p is penalized in the expression for the volumetric free energy
Ψvol. We also note that Ψvol(0, 0) = 0 and that Ψvol is convex. Next, the evolution of the
hardening variable κ is modeled by κ = βp.

4.3 Elastically admissible stresses

The elastically admissible region is defined in terms of the p and q invariants, i.e. the
pressure and the von Mises stress respectively:

B = {T̄eff : Φ(T̄eff , βp) ≤ 0} with Φ(T̄eff , βp) = (q2 + αp2)
1

2 − 3βp − c ≤ 0, (6)

where Φ is the quasi-static yield function. In order to describe the hardening of the yield
surface, we shall consider the parameters α = α0f(βp) and β = β0f(βp) as a function of a
hardening factor f = 1/(1 + βp)γ. It is noted that f(βp) (as desired) significantly reduces
the values of α and β towards the end of the compaction. The shape of the yield function
is initially parabolic, i.e. pressure dependent. As compaction develops, the shape changes
towards purely isochoric response as the point of compaction is approached (Fig. 1).

5 VERIFICATION EXAMPLE

To illustrate the model behavior in compression, Figure 2 shows the reaction force curve
for a foam cube in a compression test simulated in LS-DYNA. Constant vertical velocity,

3



M. Landervik and R. Larsson

S
h
ea

r
st

re
ss

q

Pressure p

Decreasing α

0
0

Figure 1: Yield surface in p-q space for decreasing α
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Figure 2: Compression test response curve

towards the bottom, was prescribed to the nodes on the top surface while the vertical
displacement of the nodes on the bottom surface were restrained. One can clearly see the
three different stages of deformation which are typical for a foam material. The first stage
is the practically linear elastic phase, at the beginning of the deformation (upper-right
corner in Fig. 2). This ends abruptly with the beginning of the plateau phase, during
which only little increase in stiffness occurs. Then, the deformation turns gradually into
the densification phase, where the stiffness increases rapidly (lower-left corner in Fig. 2).
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