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Summary. Computational methods for the determination of material properties of mi-
croheterogeneous materials including inelastic behaviour are discussed in this contribution.
Applications related to this class of problems range over different length scales. These can
cover up to six orders of magnitude, ranging from µ m to m. Here homogenization con-
cepts are employed to model the constitutive behaviour at macro scales based on results
obtained at micro scales. Using the concept of representative volume elements (RVE),
the theoretical background is discussed as well as the numerical treatment of the resulting
complex, three-dimensional RVEs. Examples show applications within a range of materials
used in engineering.

1 Introduction

A description of the constitutive behaviour of heterogeneous materials such as concrete
can be achieved by experimental investigations or by numerical simulations. While the

Figure 1: Multi scale description of a complex material like concrete
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experimental techniques are applied successfully since several decades, the use of numerical
simulation techniques is quite young. This is due to the fact that the underlying three-
dimensional models are complex and need considerable computer power for reasonable
computations.

Figure 1 depicts a special multi scale modelling process which can be used for many
materials. Within this process different three-dimensional mechanical models are applied
on each length scale in order to describe the constitutive behaviour on that scale. These
are called Representative Volume Elements (RVE). Often the material on a specific length
scale consists of different phases which have to be taken into account in order to character-
ize the material with sufficient accuracy. The RVE is then subjected to different loading
conditions which lead to a material response. Based on these results a homogenization
process can be initiated to describe the material behaviour averaged over the RVE. The
resulting homogenized constitutive equation is then applied within the the next scale to
model the constituents of the RVE belonging to that scale.

In this contribution an overview with regard to the theoretical and numerical treatment
of multiscale modelling is presented. Due to lack of space only the basic ideas can be
covered, details can be found in e.g. Torquato [6], Zohdi and Wriggers [7] and Löhnert
[2].

2 Determination of the RVE

The representative volume element consists of different constituents or phases. Their
distribution can be obtained either from actual CT-scans of the material or from statistical
procedures.

For each constituent of the micro-structure constitutive equations have to be formulated
based on experimental data and observations. If the material properties of the different
phases in the RVE are not known, one can employ parameter identification processes to
determine the missing constitutive data.

3 Homogenization

In order to obtain the the effective material properties for the next scale, homogeniza-
tion is needed. The effective material tensor Ceff maps the volume average of strain on
to the stress in case of linear elasticity

〈σ〉 = Ceff : 〈ǫ〉 , (1)

with 〈•〉 = 1
V

∫

Ω
• dΩ. The volume of the RVE is denoted by V . Using three-dimensional

finite element solution, the average stress and strain can be evaluated. In case of nonlinear
material behaviour the effective material response 〈σ〉 = f eff (〈ǫ〉) is calculated in terms
of the averaged quantities.

For a statistically representative analysis, the homogenization procedure is performed
for many RVEs. The result of each calculation yields the effective constitutive parameters.
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A probability density W of the effective Youngs-modulus Eeff of cement paste is shown
in Figure 2 as an example for a computation with 4600 RVEs. The probability density of
Youngs modulus is very close to a Gaussian distribution.
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Figure 2: Probability density of Youngs modulus
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4 Parameter identification

In case that the parameters of the material model on the micro-scale can not be de-
termined through experimental results a parameter identification procedure is used to
compute these. The idea of the identification is to determine the parameters such that
the calculated result fits with experimental results f , while the displacements 〈u(κ)〉 of
the RVE depend on the material data κ. This identification is obtained by solving an
optimization problem where the data κ have to be calculated in a way, such that the
objective function A(κ) is minimized

A(κ) :=
n

∑

i=1

(

〈u(κ)〉i − fi

)2
→ min . (2)

The solution of (2) is obtained by a combination of a genetic algorithm and a gradient
method. In a first step, the genetic algorithm yields a solution close to the global mini-
mum. After that the optimization procedure switches to the more efficient Levenberg-

Marquardt method.

5 Numerical Methods for Multiscale Analysis

Multi-scale analysis and homogenization involves multiple solutions of finite element
models with over 1 Million unknowns. Hence efficient discretization schemes, algorithms
and solvers have to be applied. In our approach the following methods were used.

1. Discretization. The discretization of the RVE is performed by using a meshing
in which each element only consists of one phase. Since this does not model arbi-
trary shapes of particles in the microstructure correctly one has to use an adaptive
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refinement, see Figure 3. A in depth discussion and comparison of this approach in
comparison with an aligned mesh can be found in Löhnert [2].

2. Finite elements. Due to the special discretization the Cosserat point elements
described in Löhnert et al. [3] is applied which is highly robust.

3. Algorithms. For the solution of the nonlinear response of the RVE which can
include finite and inelastic deformations a Newton algorithm is used together with
a standard load stepping procedure.

4. Solvers. The solution of the, in general, non-symmetric linear equation within
each Newton step is performed by an iterative GMRES solver which can account
for hanging nodes, see Löhnert [2]. Average solution times are about three minutes
for one linear system with 400.000 unknowns.

5. Parallel Solution. In order to keep the overall computing time for homogeniza-
tion and parameter identification within reasonable bounds, the calculations were
distributed within a network environment using a client-server based system. A typ-
ical parameter identification, like described in section 3, requires on a stand alone
standard computer system approximately one month CPU time. Within a network
environment using 15 standard PCs the same identification was completed within
2.5 days.
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