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Abstract

Many practical data sets contain outliers or other forms of data inhomogeneities. Robust
statistics offers concepts how to deal with these situations where the data do not follow strict
model assumptions. These concepts are designed for the usual Euclidean space, and they can be
easily applied to compositional data if they are represented in this space as well. It turns out
that the isometric logratio (ilr) transformation is best suitable in the context of robust estimation.
Depending on the method applied, an interpretation of result is usually done in a back-transformed
space.

1 Introduction

Statistical estimators rely on more or less strict assumptions, typically distributional assumptions. If
these are fulfilled, it is usually possible to derive optimality properties of the estimator. On the other
hand, a violation of the assumptions may lead to uncontrollable effects. In such cases an estimator can
even deliver arbitrary results. Using this undesired outcome of an estimator, it is usually impossible
to check the validity of model assumptions.

To be more specific, an example in the context of simple linear regression is shown in Figure 1.
The majority of data points follows a linear trend, and some points are strongly deviating from this
trend. The left plot shows the least squares regression line using all data points (solid), and two lines
indicating a residual distance of two standard errors (dashed). It is obvious that the outliers have
attracted the regression line. They also have increased the estimation of the residual variance, and the
resulting band for outlier diagnostics identifies not the outliers but regular data points. Thus, neither
the regression estimates nor the diagnostics is useful. In contrast, the right plot is based on a robust
regression estimator. The outliers seem to have no effect on the estimation. The diagnostic band is
based on a robust estimation of the residual variance. It flags the correct data points as outliers, and
reveals also some further data points as slightly deviating from the linear trend.

The identification of outliers as shown in Figure 1 is trivial, but it is not so straightforward
in the context of multiple linear regression with several explanatory variables, or if the position of
the deviating data points is close to the data majority forming the linear trend. Robust regression
estimation and diagnostics is still reliable in such cases.

The main idea of robust statistics is to allow for certain deviations from idealized model assump-
tions (Maronna et al., 2006). The estimators are supposed to still give meaningful results in the
“surroundings” of an ideal model. The concept of robust statistics has also been formalized into the
“theory of robust statistics” (Huber, 1981). The most prominent tools to characterize a robust esti-
mator are the influence function and the breakdown point. While the influence function measures the
effect of an infinitesimal contamination on an estimator, the breakdown point studies the behavior
of an estimator under higher amounts of contamination. Robust estimators are characterized by a
bounded influence function, because any small contamination, even if it is placed on an arbitrary
position, should only have a bounded influence on the estimator. Moreover, a robust estimator with
a high breakdown point should not give arbitrary results if a small or even moderate fraction of the
observations is replaced by any outlying values.

2 Consequences for compositional data analysis

Just as any “usual” statistical data, also compositional data may contain outlying observation. Since
compositional data are by definition multivariate data, outlier identification or, more generally, the
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Figure 1: Classical and robust regression for data containing outliers. The dashed lines are at a residual distance of two
standard errors, and they are usually used for outlier diagnostics.

identification of observations that are deviating from an underlying model, becomes more and more
difficult with increasing dimension (number of compositional parts). Even more, “deviation” has
another meaning for compositional data, because it needs to refer to the simplex, the sample space of
compositional data with the Aitchison geometry (Aitchison, 1986; Egozcue et al., 2003). The problem
of robust regression, for example, becomes extremely difficult now when applying this method directly
to the compositional raw data. Firstly, linear regression would no longer be appropriate because of
the geometry of the simplex, and secondly, distances need to be measured in terms of the Aitchison
distance. The natural way is thus to transfer the problem to the usual Euclidean space, where all the
concepts of robust regression are valid, and where robustness is designed for. The isometric logratio
(ilr) transformation is best suited for this purpose, but it introduces for some methods the difficulty
of interpreting the results (Egozcue et al., 2003). In that case it is necessary to back-transform them,
usually to the space obtained by the centered logratio (clr) transformation.

Most multivariate methods are based on an estimation of the covariance structure. Robust coun-
terparts to classical covariance estimation have been developed, and efficient algorithms for their
computation exist (Maronna et al., 2006). Figure 2 shows a demonstration of classical and robust
covariance estimation of compositional data. The ternary diagram of the original compositions (left
plot) already indicates that some data points marked by × are outlying. However, the magnitude
of their deviation from the bulk of the data seems rather small, and accordingly their effect on the
classical covariance estimation might be negligible. The right plot shows the data transformed to the
ilr space. The majority of the data points shows an elliptical structure. The outlying data points
are indeed not extreme along the coordinates; it would even be impossible to identify them when
inspecting the single coordinates. In this sense, these are multivariate outliers. Still, they have quite
an effect on the covariance estimation: The classical sample covariance estimation is determining the
structure of the dashed tolerance ellipse, an ellipse covering 97.5% of the data points in case of bivari-
ate normal distribution. The tolerance ellipse drawn with the solid line is based on a robust covariance
estimation, and it corresponds much better to the structure of the data majority. In fact, the tolerance
ellipses can also be used for multivariate outlier detection: multivariate outliers are placed outside the
ellipse. However, the outliers themselves inflate the classical ellipse, leading to the so-called masking
effect. The robust ellipse clearly flags the outliers. The tolerance ellipses can be back-transformed to
the simplex, where the inflation of the classical ellipse is also visible. However, in the simplex it is
sometimes not so clear which of the data points are deviating, and if the majority of the data points
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Figure 2: Classical and robust covariance estimation, visualized by tolerance ellipses. Covariance estimation is applied
in the ilr space, the results are back-transformed to the simplex.

is indeed generated from one distribution.
Multivariate outlier detection is usually based on the computation of Mahalanobis distances. The

Mahalanobis distances are invariant to the logratio transformations alr (additive logratio), clr, and ilr
(Filzmoser and Hron, 2008). The Mahalanobis distances are based on an estimation of multivariate
location and covariance, and for reliable outlier detection a robust estimation is necessary. This
excludes the clr transformation, because robust covariance estimation is only possible for a non-singular
data matrix. But also the invariance with respect to the different versions of the alr transformation
and the ilr transformation is only valid if the robust estimators are affine equivariant, i.e. if they
transform accordingly under affine transformations.

At the basis of robust covariance estimation, it is straightforward to robustify principal component
analysis (Filzmoser et al., 2009a), factor analysis (Filzmoser et al., 2009b), or discriminant analysis
(Filzmoser et al., 2009c). The resulting estimates are indeed robust in the sense of bounded influence
and positive breakdown point, because these properties can be derived in the usual Euclidean geometry
(see, e.g., Pison et al., 2003). Robust versions of these multivariate methods may not always seem
preferable to classical ones:

• Robust principal component analysis: The directions of the robust principal components are not
determined by the outliers, and thus they express the main data variability formed by the data
majority. Classical principal components, on the other hand, can be attracted by the outliers,
because their (classical) variance can be very high. This, however, allows to immediately “see”
large outliers in plots of the principal components. Outliers may not be well visible when plotting
the scores of robust principal components. For this reason, a diagnostic tool has been developed
that shows the influence of outlying data points on the classical estimation (Hubert et al., 2005).

• Robust discriminant analysis: The goal of discriminant analysis is usually a minimization of the
misclassification rate for new test data, hereby using the discriminant rules established from
the training data. Rules based on robust estimates of location and covariance (like for linear
or quadratic discriminant analysis) may not necessarily lead to smaller misclassification errors.
Even more, applying robust discriminant analysis in the transformed space does not necessarily
lead to a smaller misclassification rate than applying the method to the raw compositional data.
The performance of the discriminant rules depends strongly on the location of the samples in
the data space, on the data structure, and on the position of potential outliers. Applying the
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rules in the usual Euclidean geometry has the advantage that the method works as expected,
because it is designed for this geometry; an application in the simplex can cause unexpected
behavior. Finally, robust estimators are based on the points that are drawn from underlying
model distributions. If we assume that test data are also drawn from these distributions, the
rules are appropriate. A possibly larger error rate compared to a classical rule may then only
be caused by an unfavorable configuration of the outliers.

3 Conclusions

Robust estimation for compositional data is straightforward after transforming the compositions to
an appropriate space, usually the ilr space. In this space, the properties of the robust estimators
are valid and well-known. The concept of influence function or breakdown point, for example, can
be determined only in the usual Euclidean geometry. A further argument for the ilr transformation
against the clr transformation is that clr results in singularity, making robust estimation difficult or
even impossible.

It is not always straightforward to interpret results of robust statistical methods in this transformed
space. An example is factor analysis, where the meaning of the factors is based on the loading matrix.
Loadings from ilr coordinates are thus usually not helpful for an interpretation and thus results need
to be back-transformed to an appropriate space (Filzmoser et al., 2009b).
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