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Abstract

A general problem in compositional data analysis is the unmixing of a composition into a
series of pure endmembers. In its most complex version, one does neither know the composition
of these endmembers, nor their relative contribution to each observed composition. The problem
is particularly cumbersome if the number of endmembers is larger than the number of observed
components. This contribution proposes a possible solution of this under-determined problem.

The proposed method starts assuming that the endmember composition is known. Then, a
geometric characterization of the problem allows to find the set of possible endmember proportions
compatible with the observed composition. Within this set any solution may be valid, but some
are more likely than other. To use this idea and choose the “most likely” solution in each case,
the problem can be tackled with Bayesian Markov-Chain Monte-Carlo techniques. Finally, once
we are familiar with MCMC, it is quite straightforward to allow the endmember compositions to
randomly vary, and use the same MCMC to estimate the endmember composition most compatible
with the studied data.

1 Definitions

An end-member problem considers a set of D-variate observations (the N rows of X) as generated by
a composition (a convex linear mixture) of P “pure” members,

X = Z ·T, (1)

where

• each endmember composition in the original D-dimensional simplex is identified as a row of T,

• and their relative contributions to the observations are given in the rows of Z.

The so-called bilinear problem aims at obtaining estimates of both Z and T. In general, most applica-
tions of end-member modelling assume P << D (e.g. Weltje, 1997; Aitchison and Bacon-Shone, 1999;
Billheimer, 2001). On the contrary, this contribution tackles this problem in the uncommon case that
P > D, motivated by the need to recast a geochemical sediment composition into a “probable” min-
eralogical composition. The complete developments may be found in the work of Tolosana-Delgado et
al. (2011).

Through this paper the classical compositional concepts of centered log-ratio transformation (clr,
Aitchison, 1986), isometric log-ratio transformation (ilr, Egozcue et al., 2003), perturbation (⊕, Aitchi-
son, 1986), powering (�, Aitchison, 2002), as well as the additive logistic normal, a.k.a. normal dis-
tribution on the simplex (NP

S (µ,Σ), Mateu-Figueras et al., 2003) will be used, as well as the inverse
perturbation 	. Classical addition + and product · will keep their meanings with respect to the
conventional real geometry. If not explicitly stated, vectors will be considered always row-vectors
and denoted by boldface lowercase characters, while matrices will be denoted by boldface uppercase
characters. The superindex t will denote matrix transposition.

2 Geometric characterization of the set of solutions

In a first step towards a solution, we will assume end-members with fixed characteristics. In terms of
our application, that means assuming a known and fixed stoichiometry for all present minerals (i.e., set
T), and finding all possible mineral assemblages that would be compatible with a given geochemical
composition. The rows of T and X belong to a D-part simplex SD, while the rows of Y belong
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to a P -part simplex SP . Matrix T is not square, hence not invertible. We will thus make use of
the generalized Moore-Penrose inversion, based on its singular value decomposition and that of its
symmetrization,

T = UT ·D ·Vt = UT · diag(d1, . . . , dD) ·Vt,

T ·Tt = U ·D2 ·Ut = [UT ,W]︸ ︷︷ ︸
U

· diag(d21, . . . , d
2
D, 0, . . . , 0)︸ ︷︷ ︸

D2

·Ut,

where:

• the singular vectors of the symmetrized T · Tt are given by the columns of U, and identify a
basis of RP ; from them, the first D are stored in matrix UT (and coincide with the left singular
vectors of T), and the following in a matrix W, by columns; the column-vectors of W will be
called null singular vectors of T;

• the singular values are provided as the diagonal elements of matrix D, with D non-zero diagonal
values; T · Tt has the singular values of T squared, but the symmetrized matrix has (P − D)
extra zero values;

• the right singular vectors of T are given in the columns of V, and they identify a basis of RD.

With these elements, the Moore-Penrose inverse T− of a matrix T is

T− = V ·D−1 ·Ut
T (2)

Then, for each row xi of X, it may be shown that:

1. the set S of possible solutions is embedded on a hyperplane H in the P -dimensional real space
(not in the Aitchison geometry of SP ), with parametric equation

zi(λ) = xi ·T− + λ ·Wt; (3)

2. the orientation of H depends only on W, thus on the singular vectors of T ·Tt, while its actual
position may be found with T−, in Eq. (2);

3. the set of possible solutions S is the intersection S = H∩SP , as embedded subsets of RP . That
is natural, because the set of valid solutions must belong to both the hyperplane of candidate
solutions H and the simplex SP . This implies that S is a convex subset of H with the geometry of
RP . Moreover, given that Eq. (3) establishes a linear equivalence between zi ∈ H and λ ∈ RP−D,
the set of λ leading to valid compositions zi is also a convex hull in RP−D, which we denote by
Sλ to distinguish it from S ⊂ SP .

Example: take a “geochemical composition” of D = 2 parts called A and B, i.e. x = [xA, xB] ∈ SD,
and a “mineral composition” formed by P = 3 parts called a, b and c, i.e. x = [xa, xb, xc] ∈ SP .
Assume that the stoichiometry of the minerals is

T =

 1 2
1 1
0 1

 ≡
 1/3 2/3

1/2 1/2
0 1


From the first expression of T, it is obvious that a = b + c, or with regard to the second expression,
3a = 2b+ c. Thus, if we had a mineral composition z0, the set of mineral compositions

z = z0 + λ∗ · [−1, 1, 1]∗ = z0 + λ · [−3, 2, 1]/
√

14︸ ︷︷ ︸
w

(4)

would give exactly the same geochemical composition for any value of λ. Note that the asterisk marks
the equivalence with regard to non-closed stoichiometric compositions, but we will use the second one
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because it uses closed normalized vectors. We need further the SVD of T. If we consider now the
geochemical composition x = (0.1, 0.9), the hyperplane H of candidate solutions would be the line of
Eq. (4) passing through the point z0 = (0.2571, 0.0286, 0.7143). This is within SP , but we may still
move along the null singular vector w to find other valid solutions. Given the values of w, we may
have a 0 component either at xa or at xb, using respectively λ = 0.3207 or λ = −0.0535. Thus, the set
of valid solutions correspond to λ ∈ (−0.0535, 0.3207). If we now consider x = (0.9, 0.1), we may see
that there is no intersection of its space of solutions and SP , thus that geochemical composition would
not be compatible with the stoichiometry chosen. A mineral with a larger proportion of A with respect
to B would be necessary.

3 Selecting best solutions

In a second step, the goal is to select “best” solutions from this subset, in particular under some
distributional assumptions. For instance, one may assume an additive logistic normal distribution on
SP , i.e. Z ∼ N P

S (µ,Σ). This would allow to estimate the most likely mineral composition zi linked
to each geochemical composition xi, as well as the average mineral composition of the whole suite µ.
The same framework can be used in the presence of co-variables, like in the illustration example. It is
well-known that sediments of different grain size have very different mineral compositions. Thus it may
be sensible to assume that the expected mineral composition µ = E [Z] = a⊕ t� b is related linearly
(with respect to the Aitchison geometry of SP ) with the logarithm t = − log2(d̄[mm]) of the average
grain diameter (in mm) as explanatory variable. One would then try to estimate the coefficients of
the linear model. Provided that the observed geochemical compositions are all compatible with the
given mineral stoichiometry (i.e. that there exists a zi with positive components for each row xi), this
framework is tractable with standard Markov Chain Monte Carlo techniques (MCMC), in particular
with a Metropolis-Hastings (MH) algorithm for each λi, together with standard Gibbs sampling for
Σ, and µ (or a and b).

MH algorithm is useful to simulate from a density function which is known up to a multiplicative
constant, i.e. where we only have its likelihood function. Let the interest parameter θ have a likelihood
L(θ). Assume we have a simulated value for θk at step k of the chain. MH simulates a new proposal
θ∗ from an arbitrary kernel distribution K(θ∗|θk) depending on the preceding value in the chain (e.g.
from a normal centered at θk), and then randomly chooses as new θk+1 either θ∗ or θk respectively
with probability p or (1− p), being

p = max

(
1,
K(θ∗|θk) · L(θ∗)

K(θk|θ∗) · L(θk)

)
.

To efficiently explore the set of valid solutions S, kernel simulation must be done on λ ∈ RP−D (we
drop here the row index λi for the sake of simplicity). For instance, we may use a normal distribution
NP−D(λk,Ψ), with a cleverly chosen Ψ. Discussing the role of this kernel variance is not the scope of
this paper. If λ∗ does not fall within the convex hull Sλ, then λ∗ is rejected and we keep λk. Otherwise,
we may choose between λ∗ and λk with a probability p = max

(
1, f(z(λ∗);µ,Σ)/f(z(λk);µ,Σ)

)
, with

a non-closed additive logistic normal density

f(z(λ);µ,Σ) =
1

z(λ) · 1t
exp

(
−1

2
ilr(z(λ)	 µ) ·Σ− · ilrt(z(λ)	 µ)

)
. (5)

Running this chain sufficiently long we may obtain a sample from the distribution of λi, for each row i.
As usual in MCMC techniques, this sample is studied to characterize the variability of this parameter,
or in our case, better to study the variability of z(λi), computed using Eq. (3).

4 Estimating the endmember composition

The final step is to allow the end-member properties (the mineral stoichiometry) to vary in a controlled,
interpretable fashion. As we are already in a Bayesian framework, this is naturally encoded using a
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set of prior distributions for the observable composition of each endmember (i.e. the geochemical
stoichiometry of each mineral). Again, MCMC techniques are necessary to solve the problem. That
delivers the same set of results as before (most likely mineral composition of each observation z(λi),
together with the compositional variability Σ, and the mean mineral composition µ or equivalent
coefficients a and b of a linear model) plus a posterior assessment of the probable stoichiometric
composition T of the end-members most compatible with the observed data set. Two key issues
appear here: an adequate, low-dimension parametrization of T; and an unequivocal characterization
of the convex hull of solutions Sλ.

Each row of T gives the chemical composition of a mineral. From a practical point of view, some
minerals (e.g. quartz, apatite), have a fixed composition, whereas other vary in a limited fashion
between some extreme members (e.g., garnets, amphiboles, biotites, epidotes). The composition of
those of the second kind needs to be parametrized cleverly. Take the j-th row tj of T to represent
one of these minerals having Nj different extreme members. Consider the compositions of these
end-members as the rows of a matrix Mj of dimension (Nj , D). Following Eq. (1), one may write
tj = ωj ·Mj , where ωj may be seen as a random composition distributed on a simplex SNj , different
for each j, with coordinates τ j = ilr(ωj). Denoting by τ = (τ 1, τ 2, . . . , τK) the concatenation of all
coordinates of the K simplexes linked to each variable-composition mineral, we may see T = T(τ ). As
will be seen in the illustration example, this idea strongly reduces the dimension needed to represent
the stoichiometry, yet without loss of flexibility, generality and geological sense.

Consider now a stoichiometry T(τ ) = T and a slight perturbation of it T(τ + ε) := Tε. Because
of the numerics of SVD, there is no reason why their respective null singular vectors W and Wε

should be similar. Their column-vectors represent two different orthonormal bases of H, but there
is no need that they are the same. Even in the case of having one single null vector, we may find
wε ' w, or wε ' −w. It is thus necessary to force the column vectors of W to be oriented in a
given reference way. In the case of having one single null vector, the trick consists on forcing a chosen
coefficient to be always positive. When having more vectors, the generalization of this concept can be
obtained by forcing a suitable minor of dimension P −D from W to have a lower triangular form with
positive diagonal elements. This can be done in the following way. Assume that we have identified a
minor A of W which has almost surely full rank for any value of τ . Then we can compute the LU
decomposition of A = L ·U, and re-define our null vectors as W′ = W ·U−1. By construction the
minor A′ of W′ will be A = L ·U ·U−1L =, of the desired form.

Using these two ideas, we fully identify the stoichiometry and its null singular vectors. Now we
can add to our Gibbs and MH samplers a new MH loop that updates τ , either in one single step
or each τ j separately. In any case, fixed λ and having a previous simulation τ k and a candidate
simulation τ ∗, we may compute their stoichiometry Tk and T∗, their null vectors and build their
mineral compositions Zk = (zk1, . . . , z

k
N ) and Z∗ = (z∗1, . . . , z

∗
N ) respectively from Eq. (3). Then, fixed

Σ and µ (or a and b instead of the mean), we may compute the likelihood of Zk and Z∗ by means of
Eq. (5) used N times.
Example: Take the set of oxides SiO2, Al2O3, Fe2O3, MgO, MnO, CaO and Na2O, and the miner-
als quartz, plagioclase and amphiboles. We consider that these minerals may be ideally modelled as
combinations of extreme members described in Table 1. With this hierarchical definition, quartz is
not varying and does not need to be parametrized. Plagioclase can be parametrized with a scalar τplg
which describes the log-ratio of proportions of albite/anortite constituents. Finally, amphiboles are
parametrized with a 2-dimensional ilr vector τ amph, describing the proportions of the three extreme
members considered. Therefore, a (3,7)-dimensional matrix T has been meaningfully parametrized
with a 3-coefficient vector τ , which space of definition is the whole R3. These minerals, together with
those described in Tolosana-Delgado et al. (2011), may be used in the reconstruction of the mineral
compositions of glacial sediments from amphibolitic rocks, described and analysed in the contribution
by von Eynatten and Tolosana-Delgado (2011).
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Table 1: Some mineral examples, to complement those appearing in Tolosana-Delgado et al. (2011) for the mineral
reconstruction of amphibolitic rocks.

mineral member SiO2 Al2O3 Fe2O3 MgO MnO CaO Na2O

quartz quartz 1 0 0 0 0 0 0

plagioclase albite 3 0.5 0 0 0 0 0.5
anortite 2 1 0.5 0 0 1 0

amphibole tremolite-actinolite 8 0 1.25 2.5 0 2 0
pargasite 6 1.5 1 2 0 2 0.5

tschermakite 8 2 0.75 1.5 0 2 0
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logratio transformations for compositional data analysis. Mathematical Geology 35 (3), 279–300.

von Eynatten, H. and R. Tolosana-Delgado (2011). Geochemistry versus grain-size relations of sedi-
ments in the light of comminution, chemical alteration, and contrasting source rocks. In Proceedings
of CoDaWork’11 (this volume)

Mateu-Figueras, G., V. Pawlowsky-Glahn, and C. Barceló-Vidal (2003). Distributions on the
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