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1 What is a detection limit

In compositional data analysis a value below detection limit (BDL) is typically modeled as the defini-
tive information that the actual value is below some fixed value - the detection limit (see e.g. Palarea-
Albaladejo et. al (2007, 2008)). Analytical chemistry (Heinrichs and Herrmann (1990); Fletcher
(1981); Kellner et al. (2004)) however has a different view on measured concentrations. The measured
concentration Cm is not the true concentration cm of the measurant but a quantity computed from
an observable quantity Om through a calibration equation. E.g.:

Cm = βOm − α

when the observable is assumed to follow a linear model

Om = a + bcm + εo

where εo is a random measurement error typically modeled by a normal distribution of mean 0 and
variance σ2

o . The variance of εo might or might not depend on the actual concentration cm. The
parameters σ2

o , a and b are a-priorly unknown, but are typically estimated during a calibration of the
measurement procedure taking place prior to the actual geochemical study we are interested in, i.e.
they are assumed as approximately know. Setting α = a

b and β = 1
b and assuming the estimation

errors negligible results in:

Cm = β(a + bcm + εo)− α =
1
b
(a + bcm + εo)−

a

b
= cm +

εo

b

with εm = εo
b ∼ N(0,

σ2
0

b2
) = N(0, σ2

m) we get

Cm = cm + εm (1)

The variances σ2
o and σ2

m respectively might depend on the actual concentration cm. Three different
scaling laws have a simple physical interpretation:

• Constant variance: The error might be the effect of sort of additive background noise, e.g.
scattered material in a mass spectrometer. This sort of background also produces the intercept
a in the observation equation. Some noise is always detected even if the measurant is simply not
present at all.

• Variance proportional to the true value: If we count events proportional to the concentration of
the measurant, e.g. in a mass spectrometer, we get Poisson counting errors. The variance of a
Poisson distribution is proportional to its mean.

• Standard deviation proportional to the true value: Some observation methods have a limited
range of proportionality to the concentration of the measurant. Thus it could be part of the
measurement procedure to dilute the measurant into range or to measure a different total. The
relative standard deviation of the measurement error is than rescaled with the dilution ratio (or
total) when the original concentration is recomputed by dividing the result by the dilution ratio.
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Figure 1: Numerically computed effect of additive normal errors on the observed portion below detection limit values of
lognormal concentration distributions.
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Real Conditional Distribution

x~logN(2, 1); err~N(0, 0.5)
x[x + err < 1]
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Figure 2: A simulation of the conditional distribution of values below detection limit for lognormal distribution with log-
mean=2 and log-sd=1 and an additive measurement error of N(0, 0.5) corresponding to a detection limit of 1.
The left panel shows the true conditional distribution of true concentrations for values observed below detection
limit. The right hand shows the conditional distribution assuming that wrong model that an observation
below detection limit is corresponding to a value below the detection limit. The red dots show the conditional
geometric mean and the blue line the conditional geometric standard deviation.

Additional sources of measurement errors or combinations of these different sources of errors can
lead to a more complicated dependence of errors. For near 0 concentrations however typically the
constant error will dominate, leading to the effect that zero or near zero concentrations cm can lead to
measurements observations Om above or below a and thus to Cm below or above zero. To avoid such
nonsense values analytical chemistry only reports measurements for which the observant Om and/or
respectively Cm is so high that from cm = 0. Assuming a Gaussian distribution of the observation
error this corresponds to a value Om ≥ kσo + a or Cm ≥ kσm, where k is some quantile of the normal
distribution typically chosen as 2 (Fletcher, 1981, e.g.) or 3 (Kellner et al., 2004, e.g.) corresponding to
probabilities of below 0.0023 or 0.00135 to report a nonzero value if actually no measurant is present.
As a side effect a negative concentration is never reported. This value kσm is reported as the detection
limit. We will always use k = 2 in this paper.

The detection limit is thus the critical value of a Gauss test above which it is statistically proven
that measurant is present (Fletcher (1981)). Analytical chemistry reports a value below detection
limit, if the actual observation is so small that the statistical tests fails to prove that the measurant is
present. This has several consequences for the statistical analysis of geochemical data in the context
of lognormal and additive lognormal distributions, which we will discuss in detail. However in this his
paper we will not discuss possible solutions specification of the goals of the statistical analysis.

2 There are too many BDLs

In cases, where the true concentration is slightly above the detection limit, the probability of actually
observing it, as a BDL is nearly 50%. Likewise actual positive values below the detection limit have
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Figure 3: Density of a lognormal concentration distribution (black line) and the density (red line) of the distribution of
the values that would be observed with this distribution under the model of an additive normal error. The
vertical line marks the detection limit 2σm

a similar probability of being observed as above detection limit. However typically the probability
density of the true concentrations drops towards zero. Thus there will be more observations wrongly
below the detection limit than wrongly above the detection limit. This is illustrated in figure 3, where
we plot the density of a log-normal distribution as an example for a concentration distribution and
the resulting density of values observed in case of an additive normal measurement error. Below the
detection limit this density is clearly higher than the true density, while above the detection limit the
density is nearly unchanged by the convolution. I.e. while the distribution of the actually observed
measurements is not so different from the true concentration above detection limit, there are less
quantitative measurements and more values classified below detection limit than true concentrations
are below the detection limit. This is shown in figure 1. Each panel of the figure has a parameter log-
median and log-standard deviation of the lognormal distribution measured in multiples of detection
limit. The panels show the true portion of concentrations below detection limit, portion of observations
below the detection limit, the difference (i.e. the additional portion), and the portion of excess and
wrong BDLs, respectively. The panel of excess and wrong BDLs shows portion of the wrong BDLs
on all BDLs in color and the portion of missing BDLs in gray scale. Thus the number of observed
BDLs differs substantially from the the number of concentrations below the detection limit. A value
of 1 in the color area means e.g. that nearly all observed BDL are originating from concentrations
above detection limit. A value of 0.5 in the grey area would mean that 50% of the concentration below
detection limit are not reported as such.

3 Imputation based Estimation is biased

In state of the art imputation algorithms (Palarea-Albaladejo et. al, 2007, 2008, e.g.) for compositional
data the values are imputed according to the conditional expectation or conditional distribution given
being below detection limit in an additive lognormal model. Further estimates are based on these
imputed values. The portion of actually observed BDLs is different – often higher – than the portion
of BDLs in the distribution. Using the conditional distribution of additive lognormal distribution will
still lead to a wrong portion of the low values. The estimates of mean compositions based on an
imputed datasets in the state of the art model are thus biased towards lower values in this component.
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Figure 4: A simulation of the conditional distribution of values above detection limit for lognormal distribution with log-
mean=2 and log-sd=1 and an additive measurement error of N(0, 0.5) corresponding to a detection limit of 1.
The left panel shows the true conditional distribution of true concentrations for values observed above detection
limit. The right hand shows the conditional distribution assuming that wrong model that an observation below
detection limit is corresponding to a value above the detection limit.

Figure 2 shows the difference between the two conditional distributions for an example situations.
The left panel shows a simulation of the true conditional distribution of concentrations given that the
observed value is BDL and the right panel shows the conditional distribution which is used in the
state of the art modeling principle.

However simply replacing the conditional distributions does not solve the problem. Figure 4 shows
the opposite problem that the actually observed values do not represent an unbiased sample of the
true concentrations. Unlike the classical model it is thus not possible to do a separate imputation
with the conditional distribution, because even the values above detection limit are biased due to the
censoring with the detection limit. I.e. a replaced imputation would lead to an overestimation of
mean concentration in this component.

An naive idea would be to simply model the observable rather than the true concentrations.
However as visible in figure 3 the distribution of the observable values is not limited to positive
values and thus not compatible with the basic principles of compositional data analysis. A “correct”
imputation of BDLs is thus impossible.

4 High relative errors for low values

The detection limit is the limit of observations that with high probability should not be observed if we
have an actual concentration of zero. However the typical assumption of compositional data analysis is
anyway that zero is an impossible value occurring with probability zero. It is much more likely to have
values between zero and the detection limit or around the detection limit. Assuming the symmetry of
the additive error we would have a reasonable probability for true concentrations at the detection limit
to be observed as 0 or as twice the detection limit. Small values are thus observed with a substantial
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Figure 5: The errors as a function the true concentration given as multiples of the detection limit. The left panel shows
the MSLE (Mean Squared Logarithmic error) and the right panel the probability of a gross overestimation by
given factors. The dashed line is the probability of being observed at all.

relative error. This is illustrated in figure 5. The left panel shows the expected squared error of logs
as a function of the true concentration, conditional to being above detection limit. The unconditional
expected squared error of logs without a detection limit is anyway infinite. The right panel shows
the probability to differ from the true value by at least a given factor (upwards or downwards). Both
figures show that concentrations near to the detection have a substantially higher relative error and
in cases of relatively small compositional variance are even prone to gross outliers. All probabilities
include the fact that the concentration might be not observed at all because of the detection limit.
For concentrations around the detection limit the gross error probability might be quite substantial
in a relative analysis.

5 Subcompositional incoherence of geochemical measurement errors

The relative measurement error thus depends on the ratio of concentration and detection limit. A
dataset with a different total will be measured with a different relative error and will thus have a
different distribution. Similarly a third component can change the precision of the measurement of
two other components. This is illustrated in figure 6 with a simulated additive lognormally distributed
dataset with parameters µ = c(0.3, 0.3, 0.7) and

Σclr =

 0.055 0.045 −0.1
0.045 0.055 −0.1
−0.100 −0.100 0.2


and detection limit of 0.04 in all components with the corresponding additive measurement error
N(0, 0.022). One can clearly see the dependence of the relative errors in the second ilr balance on the
first ilr balance.
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Figure 6: The left panel shows a additive lognormal in ilr coordinates. The right panel shows the same compositional
dataset, where an additive error is applied and all missing values omitted.

6 Conclusions

The chemical interpretation of the detection limit and its stochastic model counterpart has thus differ-
ent consequences for the statistical analysis than we would expect from the word by word interpretation
of “below detection limit” as a concentration below some limit. The state of the art model on BDL
compositional analysis is biased.

Some ideas are not directly applicable to the true effects of measurement errors near the detec-
tion limit. Even the basic principles like subcompositional coherence and the requirement of the
independence of the analysis from the total are not fully valid near the detection limit.
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Kellner, R., J.M. Mermet, M. Otto, M. Valcárecel, H.M. Widmer (2004). Analytical Chemistry, A
Modern Approach to Analytical Science, Second edition Whiley-VCH 1181 p.

Palarea-Albaladejo, J. and J.A. Mart́ın-Fernández (2007) A modified EM alr-algorithm for replacing
rounded zeros in compositional data sets Mathematical Geology 39 , 625–645.

Palarea-Albaladejo, J. and J.A. Mart́ın-Fernández (2008) A modified EM alr-algorithm for replacing
rounded zeros in compositional data sets Computers & Geosciences 34 (8), 902–917.

Proceedings of the 4th International Workshop 
on Compositional Data Analysis (2011)

Egozcue, J.J., Tolosana-Delgado, R. and Ortego, M.I. (eds.) 
ISBN: 978-84-87867-76-7

7




