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For the exploratory analysis of three-way data, e.g., measurements of a number of objects, on a 
number of variables at different points in time, Tucker analysis is one of the most applied technique 
to study three-way array when the data are approximately trilinear. It can be considered a three 
way generalization of PCA (Principal Component Analysis). Like PCA, to interpret the results from 
these methods, it is possible, in addition to inspecting the loadings matrices and core array, inspect 
visual representation of the outcome. When the data are particular ratios, as in the case of 
compositional data, these models should consider the special problems that compositional data 
gives. Aim of this work is describe how an analysis of compositional data by Tucker analysis is 
possible and how the results should be interpreted. Moreover, a procedure for displaying the results 
for objects, variables and occasions will be given.

Keywords: Tucker analysis, logratio trasformation, vector of juxtaposed compositions, one mode 
plot, relative variation parts plot.

1. Introduction
Compositional data, consisting of such vectors of proportions, are generally  arranged into a matrix, 
when each composition is one row. Sometimes, compositional data are arranged into three-way 
array, e.g. proportions of different chemical compounds in several rivers at the different seasons. In 
these cases, one of the typical purposes of using three-way analysis is exploring the interrelations in 
data. PARAFAC/CANDECOM (Harsman, 1970; Caroll and Chang, 1970 - PC) and Tucker models 
(Tucker, 1966; Kroonenberg and de Leeuw, 1980) are the methods particularly suitable for the 
exploratory analysis. Both yield a low-dimensional descriptions of the three-way compositional 
data and, like PCA on two-way matrix of compositional data, their have proved difficult to handle 
statistically  because of the awkward constraint that the components of each vector must sum to 
unity. Gallo et al. (2008) has proposed a reexamination of PC and Tucker3 model based on a certain 
choice of prerequisites which the PC of compositional data should reasonably be expected to 
satisfy, i.e., scale invariante and subcompositional coherence. 

The principal purpose of this paper is explain a plotting procedure for visualizing the Tucker 
results of compositional data without pitfalls of interpretation. Thus, in Paragraph 2 we recall 
briefly the principal characteristics of compositional data. In Paragraph 3, once examined the 
pretreatment of compositional data, the properties and the relative geometry is considerate for the 
compositional data arranged into flatted matrices. In Paragraph 4 Tucker models for compositional 
data are given. The procedure for plotting each single mode is shown in Paragraph 5. Finally, an 
application of Tucker2 model is given in Paragraph 6. 

2. Compositional data
A row vector of compositional data,  v i = vi1,…,viJ( ) ,  can be defined as J-part composition where 

all its components are strictly positive quantities and its sum is always a constant κ . Several units 
are possible define, where the most common examples are κ = 1 , which means that measurements 
have been made in part  per unit, and κ = 100 , for measurements in percent. In mathematical term, 
any vector  v i = vi1,…, viJ( )  with  vi1 > 0,…, viJ > 0  can be transformed into a compositional vector 
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v i  by a closure operator   . The closure of  v i  is defined as   v i( ) = κ vi1 v i ,…,κ viJ v i( ) , where 

 .  is the trace of vector. The closure operator defines a transformation  ℜ+
J → SJ  where ℜ+

J  is the 

positive orthant of ℜJ  and the simplex  SJ  is the sample space of compositional data, defined as  

 
SJ = vi1,…,viJ( ) :  vi1 > 0,…,viJ > 0;  vij

j=1

J

∑ =κ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

Thus, when κ  changes, the sum of compositional vector changes but the analysis should yield 
the same results, independently  of the value of κ . The principal conditions should be fulfilled by 
any statistical method to be applied to composition data are scale invariance and subcompositional 
coherence. These conditions should have been sufficient to warn against the study of compositional 
data analysis by ‘standard’ multiway methodology. In fact, according to principle of scale 
invariance, compositional data analysis provides information only  about relative values.  Moreover, 
in according to principle of subcompositional coherence, when the distance between two full 
compositions is measured it must be greater, or at  least equal, then the distance between them when 
considering any subcomposition. For full details on structure of the simplex and relative geometry 
see Aitchison (1986) and Pawlowsky-Glahn et al. (2007). 

3. Pretreatment of compositional data into three-way array
When compositional vectors are observed in several occasions they can be arranged in a three-way 
array  as rows, columns or tubes. In this paper, the three-way array V I  x J  x K( )  has I  x K( )  

rows, where each row v ki  i = 1,..., I;  k=1,...,K( )  is a composition vector, the J  columns 

corresponding to the parts or components of composition. While  vi = v1i … v ki … v i
k⎡⎣ ⎤⎦  is a JK-

dimensional vector where ith object is observed into K different simplex spaces, ones for each 
occasion: v ki ∈Sk

J  (k = 1,...,K ). In other words, v ki  is a compositional J-dimensional vector 

observed in kth occasion, and vi  is a vector of juxtaposed compositions. Finally, we define Vk  

I  x J( )  a matrix obtained by fixing the third mode of V  at k (Vk  is the kth frontal slice of V ).

Into context of exploratory analysis, a lot of research was devoted to finding a useful 
transformation of compositional data from simplex to the usual real space. Once the multivariate 
methods are applied to the transformed data, the results are back-transformed to the original 
simplex space.

This strategy results was than for each element of row v ki  the logarithms of the ratios  vijk / vij ' k , 

known as logratio, between all pairs of parts j < j '( )  are considered (Aitchison, 1982). Thus, for 

each vector v ki  a new vector with J −1( )J / 2  logratios is given. These vector are arranged how 

rows in three-way array   

Z I  x J J −1( ) / 2 x K( )  where the typical element is log vijk / vij ' k( ) . 

Through this transformation, a direct association between the Euclidean metric structure and the 
simplex space is searched, where it is well known the linear vector space structure for the 
composition vector v ki , for more detail see Pawlowsky-Glahn et al., 2007. These results can be 

generalized for the vector vi , see appendix A for full details.

Others logratios transformation proposed in literature are additive logratio (alr), no discuss it, 
centred logratio transformation (clr),  and the isometric logratio (ilr) transformation. The alr and clr 
were introduced by Aitchison (1982), while ilr was introduced by Egozcue et al. (2003).
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The clr transformation of vijk  is the logarithmic transformation of ratios between the elements of 

compositional vector vijk  and the geometric mean of v ki :  zijk = log vijk / g v i
k( )( ) with 

 g v
k
i( ) = g(vi1kvi2kviJk )

1/J  .  Thus, the three-way array  Z  I  x J  x K( ) , with typical element zijk  and 

typical row 
 
zki = zi1k ,…, ziJk[ ] = clr v ki( ) = log vi1k / g v i

k( )( ),..., log viJk / g v i
k( )( )⎡

⎣
⎤
⎦ , is smaller of 

pairwise logratios array   

Z . The isometric logratio (ilr) transformation of v ki  is given by 

 
zi
k = zi1k ,…, ziJk[ ] = log vi1k( ),…, log viJk( )⎡⎣ ⎤⎦Ψ  with ΨΨ t = IJ −1  and Ψ tΨ = IJ − 1̂J1̂J

t / J( ) , IJ is 

J  x J( )  identity matrix and 1̂J is a vector of units of J dimension. 

Fortunately all these transformations are strictly linked, in fact,  it will show than all the Tucker 
results about  


Z  can be given by the analysis of the smaller array  Z . Moreover, it  is easy  verify 

than  
zki =

+zi
k = clr v ki( )Ψ , thus the centred logratio can be expressed how coordinate into 

orthonormal space too. Thus, following the works on two-way  matrix (Aitchison, 1986; Egozcue et 
al., 2003),  it is known than the distance between two compositional vector, e.g. da v i

k ,v i '
k( )  , into 

simplex Sk
J , known as Aitchison distance, is equivalent to the ordinary Euclidean distance in ℜJ −1 , 

e.g. d +zi
k , +zi '

k( ) . And it follows than dα
2 vi ,vi '( ) = d 2α v i

k ,v i '
k( )k=1

K∑ = d 2 + zi ,
+ zi '( )  where 

+ zi =
+zi

1 ... +zi
k ... +zi

K⎡⎣ ⎤⎦ . In other words, results that could be obtained using a vector of the 

juxtaposed compositions vi  are exactly  the same as those obtained using the coordinates of the 

juxtaposed compositions + zi   and using the ordinary Euclidean geometry.

Unfortunately, the logratio transformations remove the effect due to mean for the compositions, 
but the parts of composition preserve their means, where they are rarely  of importance in 
exploratory analysis. Thus, single centering performed successively across two way  are referred to 
as double centering (Smilde et al., 2004), i.e., double centering is performed by first centering 
across first way and then centering the outcome across the second ones. Let Zk  be kth frontal slice 

of Z , then center Zk  respect to column means is possible by the symmetric and idempotent 

centering matrix PI
⊥ = II − 1̂I1̂I

t / I( )  where II is I  x I( )  identity  matrix and 1̂I is a vector of units of 

I dimension: Yk = PI
⊥Zk .  In this way, each frontal slice of Y  is double-centered: Yk 1̂J = 0̂ I  and 

1̂IYk = 0̂J  where 0̂J  is a vector of zero of J dimension. 

When centering is performed on the  Zk  columns the system of coordinates of any composition 

is shifted to the barycentre of the simplex Sk
J  while the geometry is conserved (Pawlowsky-Glahn 

et al., 2007).

4. Three-way Tuker analysis
Tucker analysis, known as N-mode principal component analysis, is a three-way generalization of 
principal component analysis where loadings matrices are employed for each mode. A different 
number of loadings can be used in the different modes and the relations between the loadings of 
each modes are captured by a three-way array G called ‘core’ array. Specifically, let G  
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P x Q x R( )  and E I  x J  x K( )  be the core- and the residual- array  respectively, in Kronecker 

product notation, Tucker3 model can be written 

YA = AGA C
t ⊗Bt( ) + EA         (1)

where YA I  x JK( )  is given by  juxtaposition of  Y1 … Yk … YK⎡⎣ ⎤⎦ , A I  x P( ) , B J  x Q( )  and  

C K  x R( )  are the loadings matrices for first-, second- and third- mode, where for the double-

centred on each matrix Yk  the loadings matrices for the first two modes must have column sum 

equal to zero: 1̂IA = 0̂P and 1̂JB = 0̂Q . Let  GA = G1 …Gr …GR⎡⎣ ⎤⎦  be the matricized of core-array, 

where Gr is rth frontal slice of size P x Q( )  and the generic element gives the interaction between 

factors,  EA = E1 … Ek … EK⎡⎣ ⎤⎦  is the matricized of residual array with dimension I  x JK( ) . 

In Tucker3 all three modes are reduced with P , Q , R the number of factors for first-, second- 

and third- mode (P < I , Q < J and R < K ). Differently, in Tucker2 only  two of three modes are 

reduced, i.e. first and second mode, in this case the model can be written

YC = GC A
t ⊗Bt( ) + EC  (2)

with YC K  x JI( )  the juxtaposition of 
 
Y1

t … Yj
t … YJ

t⎡⎣ ⎤⎦ , 
 
GC = G1

t …Gq
t …GQ

t⎡⎣ ⎤⎦  the 

matricized of core-array, with Gq
t is qth vertical slice of size R x P( ) , and 

 
EC = E1

t … E j
t … EJ

t⎡⎣ ⎤⎦  

is the matricized of residual array with E j
t is jth vertical slice of size K  x I( ) . 

Finally,  with Tucker1 only one of three modes is reduce, e.g. first mode, in this case the model 
can be written

YA = AGA + EA  (3)

Exist a hierarchical relationship between these models, moreover the principal component 
analysis (PCA) as a special case of Tucker model. In fact, a general Tucker framework can be seen 
as attempts to model as a multiplication of score and loading matrices (Smilde et al., 2004, pp.75). 
In formal term, 

YA = AWA
t + EA  (4)

where A ,  YA  and EA  are defined before, and the loading matrix WA  I  x JK( )  represent the 

different three-way structure. Thus, we have  WA = C⊗B( )GA
t , in case of Tucker3,  

WA = I⊗B( )GA
t , in case of Tucker2, WA = GA

t , in case of Tucker1, and WA = B  in case of PCA.

In order to estimating the parameters of the models, several algorithms are proposed in literature. 
Considering the bilinear model (4) a direct closed-form to the problem is the singular value 
decomposition (SVD) of  YA  than, in case of PCA and Tucker1, provide a direct fit  of all 
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parameters. In case of Tucker3 and Tucker2 model, solving the equation (4) provide a direct fit of 
A while the others parameters are confused into WA . This problem can be solved in two steps. 

First, as to determine the loadings A  is to take the first P left  singular vectors of  YA . Similarly, the 

loadings B  and C can be given by the first Q  and R left  singular vectors of  YB  and YC , 

respectively. And once fitted A , B  and C  (for Tucker2 C = IK ), the core-array can subsequently 

be calculated as  GA = A
tYA C⊗B( )  (for full details see Smilde et  al., 2004, pp.120). Thus,  the 

loadings are the singular values decomposition of Y  matricized on different  ways, and core-array 

contains the strength (or weight) of the linkage between the loadings of the different modes.

5. Graphical displays
In additional to inspecting the loadings matrices, several displaying procedures can be used to 
facilitate the interpretation of Tucker results. Kroonenberg (2008) and Kiers (2000) discussed 
several types of plots: one mode plot in which the elements of a single mode are plotted such 
components against the elements of the two others combined modes, joint biplot in which the 
elements of one mode to the elements of one other mode are displayed for each of the elements in 
the third mode, nested-mode plot in which are plotted such combined elements against each other to 
obtain trajectories. Of course, in case of compositional data to respect the nature of data and the 
preprocessing on them, the graphical display  procedure must assure orthonormal basis and more 
attention should be payed when the plots are inspected. 

Here a graphical display  for each dimension separately, against the elements of the two others 
combined modes is proposed, where the role assigned to the three modes are different. Thus, I 
objects should be plotted into P-dimensional orthonormal space and, at the same time, their 
loadings should be have zero-sum (due to double-centred preprocessing on the data). In 
mathematical term, we are looking for a matrix WA  such that WA

tWA = IP  and a loadings matrix A  

such that 1̂IA = 0̂P  where 0̂P  is a vector of zero. Similarly, for the plot of J parts we have to find a 

Q-dimension orthonormal space WB
tWB = IQ( )  and loadings with zero-sum 1̂JB = 0̂Q . Regarding 

the K occasions, there are plotted into an R-dimensional orthonormal space, however, due to 
pretreatment on original data, they  have not a particular interpretation therefore it  is not considered 
here (for its interpretation see Kroonenberg, 2008 or Smilde et al., 2004).  

5.1 Plotting objects
Let vi  and vi '  be two JK-dimensional vectors with  ith and i’th objects observed into K different 

simplex spaces, their coefficients for ℜJK  is arranged into ith and i’th row of YA . We have seen 

than the distance between the two vectors into K simplex spaces is equivalent their ordinary 
Euclidean distance. Now, Tucker analysis searches for the I objects a low-dimensional subspace, 
where the I I −1( ) / 2 pairwise distances between the objects should be preserved as well as possible 

given the reduced dimensionality of space. 
In Section 4 we have seen than the loadings for objects are given by  the SVD of flatted array of 

centred logratio transformation of compositional data, YA , where we are interested to evaluate the 

pairwise logratios. Generalizing the results of Aitchison and Greenacre (2002), in Appendix B is 
showed than studying the centred logratios data it is possible to obtain all the results about the 
pairwise logratios data where the only  difference is that the singular values differ by  the constant 
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factor J . Finally, to preserve the Euclidean distance between the I objects observed in K 
occasions, we have to find an orthonormal basis for A . Now, due two double-centred of each Yk  

 k = 1,…,K( ) , the SVD of YA  assure than the matrix of left singular vectors A  is orthonormal and 

column centred, nevertheless the basis WA  is just orthogonal and not orthonormal: 

WA
tWA = GA C

t ⊗Bt( ) C⊗B( )Gt
A = GAIQRG

t
A . In this form, A  is an orthonormal score matrix, 

therefore, if it is plotted the Euclidean distance between their elements are not preserved. For the 
purpose to plot the objects into orthonormal subspace, following Kiers (2000), we propose  to find a 
transformation TA  matrix such that ŴA =WATA  is columnwise orthonormal (i.e. Gram-Schmidt 

orthonormalization), and postmultiply A  by TA
t( )−1  we have YA = AWA

t = ÂŴA
t  with Â = A TA

t( )−1 . 

In this form, Â  can be referred to coordinates, as principal coordinates, into an P-orthonormal 
subspace of ℜJK . In fact, the sum of square of the coordinate of points along the axes is the sum of 
squares of core-matrix elements, then dividing the sum of square of the coordinate of points along 
each axis by the total sum of squares, we get the proportion of the variability  explained 
(Kroonenberg, 2008 pp.226). Moreover, the matrix Â  has column sum equal to zero, then the 
centre of plot coincides with the centre of gravity of the objects. The distances between the I points 
are the approximation of the distances between the I objects observed in K different occasions. 
However, the estimated distance between each couple of objects are always less than the exact 
value observed through the K simplex spaces. 

5.2 Plotting parts
Based on the symmetric property  of Tucker models to obtain a one mode plot for the J parts, we can 
applied the same procedure used for plotting the I objects. Let YB  be given by juxtaposition of 

 Y1
t … Yk

t … YK
t⎡⎣ ⎤⎦ , the SVD of YB  assure than the matrix of left  singular vectors B  is orthonormal 

and column centred, and the basis is orthogonal: WB
tWB = GB C

t ⊗At( ) C⊗A( )GB
t = GBIPRGB

t , 

where  GB = G1
t …Gr

t …GR
t⎡⎣ ⎤⎦  is the matricized of core-array, Gr is rth frontal slice of size 

P x Q( ) , and IPR  is PR x PR( )  identity  matrix. Hence, to display the J parts observed in K 

occasions in a Q-orthonormal subspace of ℜ IK , the principal coordinates of parts are B̂  with 

B̂ = B TB
t( )−1  and ŴB =WBTB  is the orthogonal base, where the transformation TB  matrix is again 

given by a Gram-Schmidt orthonormalization. 
In this form, as known covariance form, the J parts are generally plotted as arrows.  And due to 

constrain 1̂JB = 0̂Q , the centre of plot is coincident with the centroid of the parts. However, to bring 

the solution onto the scale of logratio variance and covariance, the principal coordinates have been 
rescaled by  the constant 1 / IK −1 , thus the length of each arrow is an approximation of the 
standard deviation of the corresponding parts observed into K different occasions. In other words, 
the length of each arrow is an approximated measure of the standard deviation for each row vector 
of  YB . 

Unfortunately, this measure vary  when a subcomposition is considered, because depend on the 
full composition through the geometrical mean g v ki( )   i = 1,…, I;  k = 1,…,K( ) . Thus, in this plot 
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then we will call relative variation parts plot, only  the difference between the parts can be 
considered. The J J −1( ) / 2  differences between the end points of each arrow, called links by 

Aitchison and Greenacre (2002), indicate the standard deviations of logratio between the parts. 
Thus, the largest link between two parts indicates the most relative variation, when one arrow is 
placed on top of another, means that  the logratio between these parts is approximately constant. 
Moreover, links provide information on the correlation between the logratios, it is used to identify 
subcompositions. In fact, the angle cosine between two links is an approximation of the correlation 
between the correspondent logratios. Nevertheless, because the point where one link intersect 
another ones can be not presented into plot, reading the correlation between two links can be a very 
hard operation. In these cases, it is possible plotting directly the pairwise logratios. In fact, we can 
observe than the matrix B̂  gives the principal coordinates of parts in case of centred logratios and it 
is shown than B = EJM / J  where EJ  is  a J  x J J −1( ) / 2( )  matrix with 0s in each column 

except for a 1 and -1 in two rows, and M  is the left singular vectors matrix of the pairwise logratios 
(see Appendix B for full details). 

Hence, the results of analysis of the larger flatted array of pairwise logratios can be obtained 
from the analysis of to smaller array of the centred logratios data. In fact, it is possible to get  the 
principal coordinates of the pairwise logratios  B  by the principal coordinates of the centred 
logratios B̂ :  

B = JEJ
t B̂ . In this case, the J J −1( ) / 2  arrows are the correspondent links and the 

point of intersection between all the links (arrows) is the centre of plot, while the length of the 
arrows give the values, in logratio, of the standard deviations. 

6. Application
To illustrate how each single mode plot should be interpreted, we consider ‘hongite’ , ‘kongite’, 
‘boxite’ and ‘coxite’ datasets (Aitchison, 1986). The data are arranged in three-way array  where 
each horizontal slice has the percentages by  weight of ‘albite’, ‘blandite’, ‘cornite’, ‘daubite’ and 
‘endite’ observed on 25 specimens of the mineral. These data are clr transformed and centred by 
parts too. Once, double centred the three-way array the principal coordinates for the four objects 
and the five parts are computed and the relative low-dimensional plots for the ℜ80  and ℜ100  are 
built, respectively, where the first  two axis are used for both one mode plots. Differently, the low-
dimensional plot  for the 25 specimens is not considered here, because they are just a replication of 
the measure. Thus, for this analysis Tucker2 model with two dimension for each mode are used 
P = Q = 2( ) , as the model is able to explain the 76.6% of variability (44.19% and 32.42% for first 

and second axis, respectively).
In Figure 1.a the distances between the four points are approximations of the distances between 

the minerals, where the points are centred at the origin of the display and the distance between the 
points, in this low-dimensional plot, are approximations of the distances between the objects in the 
original high-dimensional space. Specifically, across the 25 specimens it is possible said than, in 
term of parts, the compositions of ‘boxite’ and ‘coxite’ are more similar to the compositions of 
‘hongite’ and ‘kongite’.
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Figure 1: Objects plot (a) and relative variation parts plot (b).

In Figure 1.b, the length of arrows give information on the standard deviation of the 
correspondent centred logratio, thus it is possible observe than ‘blandite’  and ‘cornite’ have a more 
large standard deviation of ‘albite’, ‘daubite’ and ‘endite’. But these measures depend on the full 
composition through the geometrical mean then they  are not subcomposition coherence. For this 
reason only links between the arrows are considered. Each link gives, in term of standard deviation 
of the logratio, information on the relative variation between the parts. Here can be observed than 
the variation between ‘blandite’ and ‘endite’ is larger than the variation between ‘blandite’ and 
‘daubite’. 

In term of angle cosine between the links can be verified the highest correlation between 
‘blandite/cornite’ and ‘blandite/daudite’ or the lowest between ‘albite/cornite’ and ‘daudite/endite’. 
The correlation between the logratios is more evident in  Figure 2. In this plot all links intersect the 
origin thus the cosines between the arrows are the approximation of correlation and the length of 
arrows are the approximation of standard deviation of logratios. Thus, ‘blandite/cornite’ has very 
high direct correlation with ‘blandite/daudite’ and very high inverse corrlation with ‘albite/blandite’
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Figure 2: Pairwise logratios parts plot.

7. Conclusion
Through this paper we have shown how three-way array  of compositional data can be analyzed by 
Tucker models and illustrated by  one mode plots. The approach is based on the centred logratios 
transformation of the compositional data and the basic conclusion is that Tucker models give results 
than satisfy all the properties researched in case of compositional data. 

The plotting procedure described here is a very powerful and friend tool for visualizing the 
Tucker results. In fact, the graphical interpretation of principal components is more easy and 
intuitive than read the table of values especially when there are more objects and parts. Of course, 
the distance, the relative variation and the correlation give in these plots are an approximation of the 
original, and when the plot are inspected should be careful to the percentage of variability 
explained. 
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In many cases plotting the occasions can be given very important  informations on the variability 
generate by the third mode. For example, in case of the compositions are measured by different 
instruments, analyzed by several methods, in several time or geographical position. But in other 
cases the occasions are just a replication of the measure, e.g. in application, thus we need not to 
analyze them and Tucker2 model can be used more efficiently. Regarding to Tucker1 model, it is 
rarely applicable in case of compositional data because the parts are not considered, thus it is 
studied in this paper just to consider all the family of Tucker models.  

Other graphical representation of Tucker results are been proposed, as relative variation joint 
biplot (Gallo, 2011). This is preferable to one mode plots when we would investigate the 
relationship between the elements of different modes. Thus, plotting together compositions and 
parts may highlight the relation between them for each occasions. Information than cannot be given 
by the one mode plots. However, the principal difficulty of relative variation joint biplot is the large 
set of information than can be extracted by it, thus it can not be friend to inspect especially  when 
the dataset presents more parts. In fact, in short, to examine the interpretation principles of relative 
variation joint biplot we can consider than it stays to three-way analysis as the relative joint biplot 
(Aitchison and Grenacre, 2002) stays to two-way analysis. 

Regarding the rebuild of the three-way array of original data, it is well known the clr 
transformation has an inverse function clr−1( )  then if we know the geometrical mean of each 

compositional vector and the mean for each parts in the different occasions it is possible rebuild the 
array  of original data. Moreover, it  is possible get an approximate rebuild of the array  of 
compositional data Y  if the loading matrices A ,B , C  and the core-array G  are known, e.g. the 

flatted matrix ŶA  YA = ŶA + EA( )  as ŶA = AGA C
t ⊗Bt( ) . Unfortunately, in the one mode plots the 

objects, parts and occasions are displayed as principal components then we can not to have the 
loading matrices because their values are confused with the transformation matrices used to assure 
orthonormal axis. Thus, if they are available just one mode plots we can not rebuild the original 
data. 

Appendix A: Geometry for a vector of juxtaposed compositions
Let  vi = v i

1 … v i
K⎡⎣ ⎤⎦  be a vector with the coordinate of ith object into K different simplex spaces, 

where v i
k ∈Sk

J . To have a linear vector space structure for this vector we define perturbation 

operation, power transformation, inner product, norm and distance. 
a. Given the pertubation between two compositions v i

k ,v i '
k ∈Sk

J :

  
 
v i
k ⊕ v i '

k =  vi1kvi '1k ,…,vijkvi ' jk ,…,viJkvi ' Jk⎡⎣ ⎤⎦ ; then the perturbation between vi  and vi '  is

 vi ⊕ vi ' =  vi11vi '11,…,viJ1vi ' J1[ ]… vi1kvi '1k ,…,viJkvi ' Jk[ ]… vi1Kvi '1K ,…,viJkvi ' JK[ ]⎡⎣ ⎤⎦
b. Given the power transformation of a composition vector v i

k ∈Sk
J  by a constant α ∈ℜ : 

 
α  v i

k =  vαi1k ,…,vαijk ,…,vαiJk⎡⎣ ⎤⎦ ; then the power of  vi  by a constant α ∈ℜ  is 

 
α  vi =  vαi11,…,vαiJ1⎡⎣ ⎤⎦… vαi1k ,,…,vαiJk⎡⎣ ⎤⎦… vαi1K ,…,vαiJK⎡⎣ ⎤⎦⎡⎣ ⎤⎦
c. Given the inner product between two compositions v i

k ,v i '
k ∈Sk

J : 

v ki ,v
k
i ' α

= log vijk / vij ' k( ) log vi ' jk / vi ' j ' k( )
j '=1

J

∑
j=1

J

∑ / 2J ; then the inner product between  vi  and vi '  is
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vi ,vi ' α
= log vijk / vij ' k( ) log vi ' jk / vi ' j ' k( )

j '=1

J

∑
j=1

J

∑
k=1

K

∑ / 2JK

d. Given the norm of v i
k ∈Sk

J : v ki α
= log vijk / vij ' k( )2 / 2J

j '=1

J

∑
j=1

J

∑⎡
⎣
⎢

⎤

⎦
⎥

1/2

; then the norm of  vi  is 

vi α
= log vijk / vij ' k( )2 / 2JK

j '=1

J

∑
j=1

J

∑
k=1

K

∑⎡
⎣
⎢

⎤

⎦
⎥

1/2

e. Given the distance between two compositions v i
k ,v i '

k ∈Sk
J :

dα v
k
i ,v

k
i '( ) = log vijk / vij ' k( ) − log vi ' jk / vi ' j ' k( )( )2 /

j '=1

J

∑
j=1

J

∑ 2J
⎡

⎣
⎢

⎤

⎦
⎥

1/2

; then the distance between vi  and vi '  

is dα vi ,vi '( ) = log vijk / vij ' k( ) − log vi ' jk / vi ' j ' k( )( )2 /
j '=1

J

∑
j=1

J

∑
k=1

K

∑ 2JK
⎡

⎣
⎢

⎤

⎦
⎥

1/2

.

Thus, this structure satisfies the following properties:
a. dα vi ,vi '( ) = dα vi '' ⊕ vi ,vi '' ⊕ vi '( )
b.  α dα vi ,vi '( ) = dα α  vi ,α  vi '( )

Appendix B: Equivalence of  logratio and centred logratio plot of first and second mode
Let L  I  x J  x K( )  be an array with typical element log vijk( ) , and Lk  the kth frontal slice 

k = 1,...,K( ) . Given PJ
⊥ = IJ − 1̂J1̂J

t / J( )  the symmetric and idempotent centring matrix, the kth 

frontal slice of the centred logratios can be write LkPJ
⊥  with typical element 

clr vijk( ) = log vijk / g v i
k( )( ) = log vijk( ) − 1 / J( ) log(vijk )j∑ . Thus, for the kth frontal slice, the double 

centred logratios matrix is Yk = PI
⊥LkPJ

⊥ . Let EJ  be  a J  x J J −1( ) / 2( )  matrix  with 0s in each 

column except for a 1 and -1 in two rows, since EJEJ
t = JPJ

⊥ . Thus, the typical element of LkEJ  is 

the pairwise logratios log vijk / vij ' k( ) , and Xk = P
⊥
ILkEJ  is the kth pairwise logratios frontal slice, 

again centred with respect to column. 
To verify the equivalence between pairwise and centred logratios for first - and second-mode, the 
S V D o f   YA = Y1…Yk…YK[ ] ,  YB = Y1

t…Yk
t…YK

t⎡⎣ ⎤⎦ ,  XA = X1…Xk…XK[ ]  a n d 

 XB = X1
t…Xk

t …XK
t⎡⎣ ⎤⎦  are considered, where the rank of all flatted matrices is equal F.

1. Equivalence of pairwise and centred logratio plot for first mode
Suppose that YA  has SVD YA = U I  x FΓF  x FV

t
F  x JK  and XA  has SVD XA =M I  x FΨF  x FNF  x J J −1( )K /2

t  

then the left singular vectors are identical: M = U ; while the singular values differ by the constant 

factor J : Ψ = JΓ .
proof:

 YAY
t
A = Y1 … Yk … Yk⎡⎣ ⎤⎦ Y1 … Yk … Yk⎡⎣ ⎤⎦

t =  Y1Y1
t … YkYk

t … YKYK
t⎡⎣ ⎤⎦
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 = PI
⊥L1PJ

⊥PJ
⊥Lt1PI

⊥ … PI
⊥LkPJ

⊥PJ
⊥LtkPI

⊥ … PI
⊥LKPJ

⊥PJ
⊥LtKPI

⊥⎡⎣ ⎤⎦

 = PI
⊥L1PJ

⊥Lt1PI
⊥ … PI

⊥LkPJ
⊥LtkPI

⊥ … PI
⊥LKPJ

⊥LtKPI
⊥⎡⎣ ⎤⎦

 = PI
⊥ L1PJ

⊥Lt1 … LkPJ
⊥Ltk … LKPJ

⊥LtK⎡⎣ ⎤⎦PI
⊥ = PI

⊥UΓ2UtPI
⊥

 XAX
t
A = X1 … Xk … XK⎡⎣ ⎤⎦ X1

t … Xk
t … XK

t⎡⎣ ⎤⎦
t
=  X1X1

t … XkXk
t … XKXK

t⎡⎣ ⎤⎦

 = PI
⊥L1E1E

t
1L

t
1PI

⊥ … PI
⊥LkEkE

t
kL

t
kPI

⊥ … PI
⊥LKEKE

t
KL

t
KPI

⊥⎡⎣ ⎤⎦

 = PI
⊥L1JPJ

⊥Lt1PI
⊥ … PI

⊥Lk JPJ
⊥LtkPI

⊥ … PI
⊥LK JPJ

⊥LtKPI
⊥⎡⎣ ⎤⎦

 = PI
⊥ L1JPJ

⊥Lt1 … Lk JPJ
⊥Ltk … LK JPJ

⊥LtK⎡⎣ ⎤⎦PI
⊥ = PI

⊥UJKΓ2UtPI
⊥

2. Equivalence of pairwise and centred logratio plot for second mode
Suppose that YB  has SVD YB = UJ ,FΓF ,FV

t
F , IK  and XB  has SVD XB =MJ J −1( )K /2,FΨF ,FNF , IK

t  then 

YBY
t
B = PJ

⊥UΓ2UtPJ
⊥  and XBX

t
B = EJ

t UΓ2UtEJ
, since UtEJEJ

t U = Ut JPJ
⊥U = JI  then between the left 

singular vectors there are the follow relation M = EtU / J ; while the singular values differ by  the 

constant factor J : Ψ = JΓ .
proof: 

 YBY
t
B = Y1

t…Yk
t…YK

t⎡⎣ ⎤⎦ Y1
t…Yk

t…YK
t⎡⎣ ⎤⎦

t
=

 
Y1

t Y1
t( )t…Yk

t Yk
t( )t…YK

t YK
t( )t⎡

⎣
⎤
⎦

 = PJ
⊥Lt1PI

⊥PI
⊥L1PJ

⊥ … PJ
⊥LtkPI

⊥PI
⊥LkPJ

⊥ … PJ
⊥LtKPI

⊥PI
⊥LKPJ

⊥⎡⎣ ⎤⎦

 = PJ
⊥Lt1PI

⊥L1PJ
⊥ … PJ

⊥LtkPI
⊥LkPJ

⊥ … PJ
⊥LtKPI

⊥LKPJ
⊥⎡⎣ ⎤⎦

 = PJ
⊥ Lt1PI

⊥L1 … LtkPI
⊥Lk … LtKPI

⊥LK⎡⎣ ⎤⎦PJ
⊥ = PJ

⊥UΓ2UtPJ
⊥

 XBX
t
B = X1

t … Xk
t … XK

t⎡⎣ ⎤⎦ X1
t … Xk

t … XK
t⎡⎣ ⎤⎦

t
=

 
X1

t X1
t( )t … Xk

t Xk
t( )t … XK

t XK
t( )t⎡

⎣
⎤
⎦

 = Et
JL1

t PI
⊥P⊥

IL1EJ … Et
JLk

t PI
⊥P⊥

ILkEJ … Et
JLK

t PI
⊥P⊥

ILKEJ⎡⎣ ⎤⎦

 = Et
JL1

t PI
⊥L1EJ … Et

JLk
t PI

⊥LkEJ … Et
JLK

t PI
⊥LKEJ⎡⎣ ⎤⎦  = E

t
J L1

t PI
⊥L1 … Lk

t PI
⊥Lk … LK

t PI
⊥LK⎡⎣ ⎤⎦EJ

= EJ
t UΓ2UtEJ

It follow that the coordinates for the J J −1( ) / 2  pairwise logratios, XB , can be given determinate 

by the Tucker3 analysis of YB . Specifically, the coordinates for the J J −1( ) / 2  pairwise logratios 

are B̂ = JEJBGB  and they can be plotted on orthonormal basis Ŵt
B = Ct ⊗At( ) .
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