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The compositional space can be seen as a vector space, where the vector addition corresponds to
perturbation and the multiplication by a scalar corresponds to powering (Aitchison, 1986; Pawlowsky-
Glahn and Egozcue, 2001). Whereas perturbation is a widely used operation in applications of compo-
sitional analysis, powering is somewhat neglected. Survey data analysis on the other hand is a domain
of applied statistics where the use of weights is predominant. The reason for introducing weights in
survey data analysis is threefold: 1. the use of complex survey designs with unequal inclusion proba-
bilities, 2. the correction of non-response, and 3. calibration procedures. We shall introduce briefly
the rationale for weights in survey analysis and then discuss the connection between survey weights
and the powering operation. Several examples will be given.

Surveys are essentially built to optimize the estimation of totals in population subgroups for a
number of variables. Practically, a key variable is chosen and the design is optimized for this variable,
the trade-off being between cost and precision. Totals are estimated by weighted sums of the sampled
values. The weights are extrapolation factors that depend on the survey design. It is an important
aspect of the data quality to inform the user on the measurement error of the published figures. Survey
design and estimation are described e.g. in Särndal, Swensson and Wretman (1992).

In a survey context, the interest is taken in totals or means across cases, but in a compositional
context, totals have no meaning. So if we want to average cases, we have to go back to the original
measurement scale and then make the closure operation. For the geometric mean composition on the
contrary, the result is the same, whether the amounts are averaged first and then a average composition
is computed, or whether the geometric mean of the compositions is computed directly and then closed.

The design-based approach does not make any assumptions on the distribution of compositions.
This opens the way to parametrization by general partitions (Aitchison, 1986, section 2.7) without
the drawback of ad hoc assumptions on multivariate normality (Aitchison, 1986, definition 6.7). In
household expenditure surveys for instance, a hierarchy of commodities with broad categories are sub-
divided into more detailed goods. A general partition can follow this organization and may be a more
convenient way to convey the information on the surveyed units. The joint probability distribution
of transforms of this general partition is derived from the distribution of the sample inclusion indicator.

After a brief review of survey methodology, we apply the design-based principles to the estimation
of compositions, of compositional transforms and of their covariance matrix on a small population.
The properties of the estimators will be investigated by simulation. The talk will end with a discussion.

1 Introduction

The aim of this paper is to provide some illustrations on the variance-covariance matrix estimators
proposed in Graf (2011) in the context of compositions. Only the material that is necessary to
understand the simulation results will be recalled here without justification.

2 Elements of Survey Design

An authoritative reference on the design and analysis of surveys based on register information is
provided by Särndal, Swensson and Wretman (1992). A succinct review is given below.

The peculiarity of data collection in finite population surveys is the existence of registers, that is of
lists of statistical units (persons, households, companies), called sampling frames. A sample is selected
from the frame. Sound scientific rules require that the selection should include a chance mechanism.
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Probability sample Consider a finite population whose elements are listed in a frame. A probability
sample S is an element taken randomly out of a set S of possible samples with a known probability
of selection p(.). The procedure defining

Pr(S = s) = p(s), s ∈ S

must give every element in the frame a non-zero probability of selection.
Thus the probability πk of selection of unit k in the population is given by the probability that

one of the samples containing k (s 3 k) is selected. (The symbol 3 is used in order to emphasize the
fact that s is variable and k is fixed.)

πk = Pr(S 3 k) =
∑

{s∈S : s3k}

p(s). (1)

In the same way, the joint probability of selection πik of units i and k is given by the probability that
one of the samples containing both i and k is selected.

πik =
∑

{s∈S : s3i and k}

p(s) πkk = πk. (2)

2.1 Examples of survey designs

We give below two examples of survey design.

Bernoulli design In the Bernoulli design, each unit is sampled with a fixed probability π and
independently. We have

πk = πkk = π and πik = π2 , i 6= k.

The sample size is random in this case with expectation Nπ, where N is the population size.

Fixed size designs In a fixed size design, n units out a population of size N are selected without
replacement according to prescribed probabilities πk. The first case is is the simplest one:

• If πk is constant, we have the simple random sampling design without replacement. One easily
sees that in this case πk = n/N and πik = n(n− 1)/(N(N − 1)). It is easy to set up a selection
algorithm that generates a random sample according to this design.

• In the more general case of unequal selection probabilities with the constraint of a fixed size
design, the selection algorithm and the computation of the second order selection probabilities
are more complicated. Different sampling algorithms exist, Tillé (2006).

2.2 Design-based estimation

The purpose of the survey is the estimation of some statistic Q(S), viewed as a function of the random
sample S. Its design-based distribution is derived from p(.).

E(Q(S)) =
∑
s∈S

p(s)Q(s),

Var(Q(S)) =
∑
s∈S

p(s)Q2(s)− [E(Q(s))]2,

Cov(Q1(S), Q2(S)) =
∑
s∈S

p(s)Q1(s)Q2(s)− E(Q1(s)) E(Q2(s)).

The sample membership estimator is a fundamental example of a statistic Q(S).
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Sample membership indicator Let us denote as before by S a random sample with distribution
p(.). To each unit in the population an indicator variable of sample inclusion is attached:

zk(S) =

{
1 if k ∈ S ,

0 otherwise.

The (randomization) distribution of the binary random variables zk(S) , k = 1, ..., N gives the inclusion
probability of element k and the joint inclusion probability of elements i and k:

Pr(zk(S) = 1) = πk, Pr(zi(S)zk(S) = 1) = πik.

The first and second moments of zk(S) are easily obtained. Using equations (1) and (2):

E(zk(S)) =
∑
s∈S

p(s)zk(s) =
∑

{s∈S : s3k}

p(s) = πk,

Var(zk(S)) = E(z2k(S))− E(zk(S))2 = πk − π2k, (3)

Cov(zi(S), zk(S)) = πik − πiπk. (4)

Note that the sample size is given by nS =
∑

k∈U zk(S) and, depending on the sampling design, it can
be fixed or random.

Linear statistic Let yk be some quantity of interest attached to individual k, for instance an age
class indicator or the income. The quantity yk is observed if k is in the sample and unknown otherwise.
The aim is to estimate the total of yk, k ∈ U , for instance the total number of persons in a given age
class or the total income in the population. The parameter of interest is the sum

θ =
∑
k∈U

yk.

• Horvitz-Thompson or π estimator
The estimator

θ̂1(S) =
∑
k∈U

ykzk(S)

E (zk(S))
=
∑
k∈U

ykzk(S)

πk
=
∑
k∈S

yk
πk

(5)

is called the Horvitz-Thompson or π estimator.

It is unbiased for θ:

E
(
θ̂1(S)

)
=
∑
k∈U

yk E (zk(S))

E (zk(S))
=
∑
k∈U

yk = θ,

• Variance of θ̂1(S)
It is given by:

Var
(
θ̂1(S)

)
=
∑
i,k∈U

yiyk
πiπk

Cov (zi(S), zk(S)) =
∑
i,k∈U

yiyk
πiπk

(πik − πiπk) , (6)

where Cov (zi(S), zk(S)) is given by equation (3) if i = k and by equation (4) if i 6= k.

Notice that yk is not considered as a random variable, but rather as a multiplicative constant
applied to the random sample inclusion indicator.

• Variance estimator of θ̂1(S)
The variance of θ̂1(S) in equation (6) is given by a sum over the whole population, but yi and
yk are only known on the sample, so we need an estimator. Its Horvitz-Thompson estimator is
given by

V̂ar
(
θ̂1(S)

)
=
∑
i,k∈U

yiyk
πiπk

(πik − πiπk)
zi(S)zk(S)

πik
=
∑
i,k∈S

yiyk
πiπk

πik − πiπk
πik

. (7)

This estimator is unbiased for Var
(
θ̂1(S)

)
in equation (6), because E (zi(S)zk(S)) = πik.
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2.3 Variance of a nonlinear statistics by the linearization method

Suppose that the statistic Q(S) is twice differentiable with respect to (zk(S), k = 1, ..., N). Let us
write for simplicity zk(S) = zk and Q(S) = Q(z1, z2, ..., zN ).
Recall that E(zk) = πk. Let us denote the first partial derivative of Q with respect to zk evaluated at
(π1, π2, ..., πN ) by Q

′
k and expand Q up to the order 1:

Q(z1, z2, ..., zN ) ≈ Q(π1, π2, ..., πN ) +
∑
k∈U

Q
′
k(zk − πk).

Replacing E (Q(z1, z2, ..., zN )) by its first order approximation Q(π1, π2, ..., πN ), we have that the
variance is evaluated by the variance of the linear statistic

∑
k∈U Q

′
kzk:

Var (Q(z1, z2, ..., zN )) ≈
∑
i,k∈U

Q
′
iQ

′
k Cov (zi(S), zk(S)) =

∑
i,k∈U

Q
′
iQ

′
k (πik − πiπk) . (8)

.

Variance estimator Let us denote by ẑ1, ẑ2, ẑN the indicators of the actual sample and let

Q̂′
k =

∂Q(S)

∂zk
|ẑ1,ẑ2,ẑN .

The linearized statistics is then

Q(S)− E(Q(S)) ≈
∑
k∈U

Q̂′
k(zk − πk).

By this expansion, the estimator of the linearized variance is

V̂ar (Q(S)) ≈
∑
i,k∈U

Q̂′
iQ̂

′
k (πik − πiπk)

zi(S)zk(S)

πik
=
∑
i,k∈S

Q̂′
iQ̂

′
k

πik − πiπk
πik

. (9)

Vector statistics The design-based covariance matrix estimator of a vector statistic Q(S) follows
along the same lines:

Q̂′
k =

∂Q(S)

∂zk
|ẑ1,ẑ2,ẑN

V̂ar(Q(S)) ≈
∑
i,k∈S

Q̂
′
i(Q̂

′
k)
tπik − πiπk

πik
. (10)

2.4 Four variance estimators for compositions

Let tk be some total amount for unit k ∈ U (U is a population of size N) and let wk(= 1/πk) be
the corresponding survey weight. The total amount tk is distributed among D components tkpk, k =
1, ..., N , where pk is the corresponding D-parts composition.

The D-part composition giving the cases closed arithmetic mean of amounts and closed geometric
mean estimators are respectively

p̄am(S) =
1∑

i∈U witizi(S)

∑
k∈U

wktkzk(S) pk, (11)

p̄gm(S) =
1∑

i∈U wizi(S)
�
∏
k∈U

[wkzk(S)]� pk. (12)

In the above expression, the product is computed componentwise.

Notice that only the closed geometric mean is compatible with Aitchison’s geometry, see Pawlowsky-
Glahn and Egozcue (2002).
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Closed arithmetic mean of amounts From the design-based viewpoint, it is a ratio of sums. The
design-based covariance matrix estimator Vam of p̄am(S) in equation (11) is given by equation (10),
with:

Q̂
′
k = Q̂

′
k

(am)
=
wktk (pk − p̄am(S))∑

i∈S witi
, k ∈ S. (13)

Additive logratio of the geometric mean composition The transform alr(p̄gm(S)) is obtained
from equation (11) with alr(pk) replacing pk, and wk replacing wktk. Thus the corresponding covari-
ance matrix Valr .gm is given by equation (10) with

Q̂
′
k = Q̂

′
k

(alr .gm)
=
wk [alr(pk)− alr(p̄gm(S))]∑

i∈S wi
. (14)

The covariance matrix of other transforms are obtained along the same lines.

Closed geometric mean composition The covariance matrix of p̄gm, denoted by Vpgm, is given
by equation (10) with:

Q̂
′
k = Q̂

′
k

(gm)
=

∂

∂zk
p̄gm(S) =

(
diag(p̄gm(S))− p̄gm(S)p̄gm(S)t

) [ ID−1
0tD−1

]
Q̂

′
k

(alr .gm)
. (15)

Additive logratio of the arithmetic mean composition Linearizing alr(p̄am(S)), we obtain :

Q̂
′
k = Q̂

′
k

(alr .am)
= diag

(
p̄am,−D
p̄am,D

)−1 wktkD(pk,−D/pkD − p̄am,−D/p̄am,D)∑
iwitiD

. (16)

These variance-covariance matrix estimators will be used to derive confidence domains for the mean
compositions p̄am and p̄gm.

Confidence domains Let us denote by p̄ either p̄am or p̄gm, by V the corresponding covariance
matrix in Euclidian geometry, and by Valr the covariance matrix of alr(p̄). We obtain confidence do-
mains in Aitchison’s geometry by back-transformation of the confidence domains computed for the alr
transforms. These domains can be compared with those obtained in Euclidian geometry. Let d = D−1.

If the sample size is large enough, the critical value at the (1 − α) confidence level is χ2
d;1−α, the

(1− α) quantile of the chi-square distribution with d degrees of freedom. Then we have:

1. the confidence domain for p in Euclidian geometry is limited by a d dimensional ellipsoid, because
V is of rank d. Let U be a D × d matrix, such that Ut V U is of full rank. The confidence
domain for p is given by{

p ∈ RD | (p− p̄)t Ut
(
UtVU

)−1
U (p− p̄) ≤ χ2

d;1−α

}
(17)

2. the confidence domain for alr(p) is{
alr(p) ∈ Rd | (alr(p)− alr(p̄))′V−1alr (alr(p)− alr(p̄)) ≤ χ2

d;1−α

}
(18)

3. the corresponding domain for p in Aitchison’s geometry is a subset of the simplex SD:{
p ∈ SD | (alr(p)− alr(p̄))′V−1alr (alr(p)− alr(p̄)) ≤ χ2

d;1−α
}

(19)
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Domains 2. and 3. were used in Graf (2006).
For small sample size n, different options are available for the critical value, see Rao, Scott and

Skinner (1998). If we restrict to one-stage designs without stratification, as in the examples below,
the critical value χ2

d;1−α is replaced by Hotelling’s T 2 namely

(n− 1)d

n− d
Fd,n−d;1−α,

where Fd,n−d;1−α is the upper α quantile of the F distribution, according to the classical theory
(because in this case the nominal and actual degrees of freedom are equal). Equivalently, one can
compute the actual coverage 1 − α̃ of the domains in equations (17) to (19). With Fd,n−d denoting
the cdf, it is given by

1− α̃ = Fd,n−d

(
n− d

(n− 1)d
χ2
d;1−α

)
. (20)

3 Simulation example

In order to see how a complex survey design enters into play, we consider a small population. The
following example utilizes the dataset ”election” provided by Lumley (2010). This dataset contains
voting data from the US 2004 presidential election. It provides the number of votes per ”precinct”
(state or county, depending on data availability) for the 3 candidates: George W. Bush, John Kerry
and Ralf Nader. The total number of precints is N = 4600.

Lumley’s sampling design is of fixed size (number of sampled precincts is n = 40). Precinct k,
k = 1, ..., N , is sampled with probability πk proportional to the total number of votes Tk. Thus we
have:

πk = 40Tk /
∑

i=1,...,4600

Ti

The idea behind that choice of inclusion probabilities is to give the same weight to each vote at the
individual voter’s level. In Lumley’s example a sample is drawn using Tillé’s splitting method, imple-
mented in the ”sampling” package by Matei and Tillé (2009). This sampling design provides an exact
algorithm for the computation of the second order selection probabilities πik in equation (2). Thus
variance-covariance matrices of the type given in equation (10) can be computed without difficulty.
Note that the knowledge of the first order selection probabilities does not determine the sampling
design uniquely. Other selection algorithms will provide other second order inclusion probabilities
with the same πk, see Tillé (2006) for details.

3.1 Datasets

Whereas the minimum number of votes is 2 for Bush, and 1 for Kerry, Nader had no vote at all in
1778 precincts.

Transformed data To avoid problems with zero parts, the dataset is slightly transformed: if, in
a specific precinct, the votes for Nader are less than 1% of the total votes, he is given that 1%. The
votes of the best elected candidate in the precinct is changed accordingly, so that the number of votes
per precinct remains constant. Figure 1 shows two boxplots per candidates: the number of votes per
precinct in the original data (left) and in the transformed data (right). One can see that the parts for
Bush and Kerry are hardly modified. As can be observed from the boxplot for the total of the votes,
the size of the precinct varies widely, and consequently the inclusion probabilities.

Artificial data In order to begin with a less extreme case for compositional data analysis, an
artificial dataset was created:
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Figure 1: 2004 US presidential elections: original and transformed data

Let us denote by Bush the number of votes for Bush in the original dataset (similarly for the other
candidates). Set

B = log(Bush + 10)

K = log(Kerry + 10)

N = log(Nader + 10)

T = B +K +N

The sampling design for the artificial dataset is Tillé’s splitting method again, but with πk proportional
to the new Tk. Figure 2 shows the boxlots of B,K,N and T (above), and B/T,K/T and N/T (below).

3.2 Simulation setup

Tillé’s sampling design is applied in 3 cases

1. Artificial data, sample size n = 40;

2. Artificial data, sample size n = 10;

3. Transformed data, sample size n = 40.

1000 simulations were performed in each case. In each simulation,

• the arithmetic mean, the geometric mean, their alr transforms and the four corresponding co-
variance matrices derived in section 2.4 are computed.

• confidence domains of the linearized estimators are computed in all four cases, using equation
(17) for ”pam” and ”pgm” and equation (18) for ”alrpam” and ”alrpgm”.

• a binary variable recording whether the true value (obtained from the complete dataset) is within
the confidence domain is computed.
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Figure 2: Artificial data:
B=log(Bush+10), K=log(Kerry+10), N=log(Nader+10), Total=B+K+N.

3.3 Results and discussion

The confidence domains in the alr space are back-transformed to the simplex, using equation (19),
to ease the interpretation. Note that exactly the same domains would have been obtained from the
linearization based on another transform.

Examples of the confidence domains in the simplex For case 1 (artificial data, sample size
40), the confidence domains based on one random sample are plotted in figure 3. We see that

• the arithmetic and geometric mean estimates are near;

• the confidence domains are similar, whether they are computed in the Euclidian or Aitchison’s
geometry.

On the contrary, in case 3 (transformed data, sample size 40), where the estimates are near the
boundary of the simplex, the confidence domains may vary widely , see figure 4. These confidence
domains have different properties, namely:

• We cannot be certain that the confidence domains under the heading ”direct linearization”, that
is in Euclidian geometry, are entirely within the simplex.

• The back-transformed alr domains under the heading ”linearization in Aitchison’s geometry”
are interior regions of the simplex by definition.

• In the centred representation in figure 5, domains in Euclidian geometry are simply translated;
but domains in Aitchison’s geometry change their shape.

Coverage The above procedure, where the critical value for the confidence domain is determined
from the chi-square distribution with 2 degrees of freedom: χ2

2(0.95) = 5.99, is strictly valid when the
3 following conditions are met:

• the covariance matrix is exact, not estimated;
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Figure 3: Artificial data:the four confidence domains for a simulated sample of size 40.
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Figure 4: Transformed data: the four confidence domains for a simulated sample of size 40.

datasets cov.matrix n pam pgm alrpam alrpgm nominal

artificial estimate 40 0.941 0.937 0.972 0.936 0.934
artificial mean 40 0.960 0.962 0.986 0.964 0.950
artificial estimate 10 0.867 0.865 0.892 0.867 0.870
artificial mean 10 0.956 0.952 0.981 0.955 0.950
transformed estimate 40 0.793 0.290 0.709 0.279 0.934
transformed mean 40 0.952 0.856 1.000 0.843 0.950

Table 1: Coverage results (1000 simulations). Nominal confidence level is 0.95 for ”mean covariance matrix”, and is
given by equation (20) for ”covariance matrix estimate”.
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Figure 5: The four centred confidence domains corresponding to figure 4.

• the sample size is large enough for the normal approximation of the linearized estimators to be
valid;

• for the direct linearization, the confidence domain is entirely within the simplex.

Let us consider the binary variable indicating whether the confidence domain centred on the estimate
contains the true value. In order to determine the importance of the first condition, for each iteration
the binary variable is computed using two different covariance matrices: 1. the covariance matrix
estimate at each iteration, 2. the average covariance matrix over the 1000 iterations. Table 1 shows
the coverage results for the 1000 simulations of the confidence domains defined by the critical value of
the χ2 distribution with 2 degrees of freedom (equations 17 and 18). First column shows the dataset;
column 2 ”cov.matrix” indicates the type of covariance matrix; the sample size n is in column 3; the
average value of the binary variable over the 1000 simulations is given in column 4 (pam) for the
closed arithmetic mean of amount (equation 11), in column 5 (pgm) for the closed geometric mean
(equation 12), in column 6 (alrpam) and 7 (alrpgm) for the corresponding estimates in the alr space.
In the last column, the nominal coverage is 0.95, when the estimated covariance matrix is replaced
by the average over the 1000 simulation, and is given by equation (20) when the estimated covariance
matrix at each run is used. We see that

• Artificial data, sample size 40: the coverage rates are reasonably close to the nominal 0.95 (under
the chi-square distribution). We observe a slight undercoverage that is explained by the nominal
coverage based from the F distribution, except for ”alrpam”, where the procedure is slightly
conservative. When the covariance matrix is fixed at the mean over the 1000 simulations, the
coverage rates increase slightly.

• Artificial data, sample size 10: when the covariance matrix is estimated at each iteration, results
are close to the nominal F -based coverage. When this matrix is fixed at the mean over the 1000
simulations, the coverage is near to 0.95, as expected.

• Transformed data, sample size 40: undercoverage is present in all four domains, but is much
more severe for the geometric mean whether in Euclidian or in Aitchison’s geometry. This may
be due to the lack of normality in this case. When the mean covariance matrix is used instead of
the estimated one, the coverage improves dramatically, but only the ”pam” coverage is correct.
The overcoverage of ”alrpam” contrasts with the undercoverage of ”alrpgm”.
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Conclusions The above simulation results show that when the composition approaches the bound-
ary of the simplex, the linear approximation of the logarithm becomes poor and explains partly the
undercoverage of the confidence domains of the closed geometric mean composition. The fact that
in Euclidian geometry the domains can lie partly outside the simplex does not seem to be predomi-
nant. In all cases, the best results in terms of coverage were obtained for the closed arithmetic mean
of amounts in Euclidian geometry. In view of this study, the linearization method to obtain confi-
dence domains for compositions can be recommended, when the compositions are not too close to the
boundary of the simplex, especially for small sample size.
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