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We consider the problem of modelling the conditional distribution of a response given a vector of
covariates x when the response is a compositional data vector u. That is, u is defined on the unit
simplex

∆p−1 = {(u1, u2, . . . , up)T : ui ≥ 0 (i = 1, 2, . . . , p),

p∑
i=1

ui = 1}.

This definition of the unit simplex differs subtly from that of Aitchison (1982), as we relax the con-
dition that the components of u must be strictly positive. Under this scenario, use of the ratio (or
logratio) to compare different compositions is not ideal since it is undefined in some instances, and
subcompositional analysis is also not appropriate due to the possibility of division by zero. It has long
been recognised that the square root transformation

y =
√
u = (

√
u1,
√
u2, . . . ,

√
up)

T

transforms compositional data (including zeros) onto the surface of the (p−1)-dimensional hypersphere
(see for example Mardia and Jupp (2000), page 160) and that this opens the possibility of using
distributions for directional data to model compositional data. One advantage of this approach over
the logratio approach is that zero components are catered for naturally in the models. Stephens
(1982) modelled y by a p-dimensional von Mises-Fisher distribution and Wang et. al. (2007) recently
described an ad hoc approach to modelling y. Scealy and Welsh (2011) proposed the Kent distribution
to model y and the advantage of this approach is that unlike the von Mises-Fisher distribution, the
Kent distribution has a sufficiently general covariance structure. In this talk we first summarise the
additive and multiplicative Kent regression models for compositional data proposed by Scealy and
Welsh (2011) and describe some of the properties of these models. The two Kent regression models
are named ‘additive’ and ‘multiplicative’ because in these models the square root of the additive and
multiplicative logistic transformations (Aitchison, 1986, pages 113 and 131) is respectively applied to
link the mean direction of the Kent distribution with p−1 linear functions of x. We then compare the
logratio approach with the square root transformation approach and show that in certain cases the
analysis based on the Kent distribution will work better than the logistic normal compositional models
of Aitchison (1986), even when there are no zero components in u. In summary, the additive Kent
regression model has a permutation equivariance property and the multiplicative Kent regression model
has an asymptotic (large concentration) amalgamation property similar to Aitchison (1986, Property
6.12(a), page 132). The square root transformation method can therefore lead to models with nice
properties, and similar to Aitchison’s logratio transformations, the square root transformation is also
scale invariant.

1 The Kent Distribution

We begin by summarising the Kent distribution and its properties. For further details see Kent (1982)
and Mardia and Jupp (2000). Let Sp−1 = {y ∈ Rp : ‖y‖ = 1} denote the unit hypersphere in Rp.
The Kent distribution for general p ≥ 3 is defined by the density

f(y) = c(κ,β)−1 exp[κµTy + β2{γT2 y}2 + . . .+ βp−1{γTp−1y}2 − (β2 + . . .+ βp−1){γTp y}2],

for y = (y1, y2, . . . , yp)
T ∈ Sp−1, which contains a total of p(p−1)

2 location parameters and p− 1 scalar
shape parameters. In total the Kent distribution contains the same number of parameters as the p−1
dimensional normal distribution. We assume κ > 0 is a shape parameter specifically describing the
concentration and β = (β2, . . . , βp−1)

T ∈ Rp−2 are also shape parameters, but defined according to

κ

2
> β2 ≥ β3 ≥ . . . ≥ βp−1 ≥ − (β2 + β3 + . . .+ βp−1) . (1)
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The normalising constant in the density is denoted by c(κ,β), which is a function of the shape

parameters only. The p(p−1)
2 location parameters are associated with a p× p orthogonal matrix

Γ = (µ,γ2, . . . ,γp),

where µ ∈ Sp−1 is the mean direction and the vectors γ2,γ3, . . .γp are the set of principal axes
orthogonal to µ. It is useful to further parametrise Γ by writing

Γ = HK = (µ,H∗K∗),

where

H = (µ,H∗) and K =

(
1 0T

0 K∗

)
are both p × p orthogonal matrices. The matrix H is a function of µ only and the (p − 1) × (p − 1)
matrix K∗ is a function of (p− 1)(p− 2)/2 scalar parameters.

The transformation y∗ = ΓTy is called the population standardising transformation because its
density is a function of the shape parameters only and hence y∗ = (y∗1, y

∗
2, . . . , y

∗
p)
T ∈ Sp−1 can be

regarded as a standardised form of the Kent distribution. For the Kent distribution,

E (y) = µE (y∗1) and E (yyT ) = Γdiag
(
E (y∗21 ),E (y∗22 ), ...,E (y∗2p )

)
ΓT , (2)

where diag(w) is the diagonal matrix with the vectorw on the diagonal and hence µ can be interpreted
as the mean direction.

2 Regression Models

In this section we summarise the Kent regression models that were proposed by Scealy and Welsh
(2011). Suppose we have vector responses {yi ∈ Sp−1 : i = 1, . . . , n} associated with a set of covariates
{xi ∈ Rq : i = 1, . . . , n}. It is assumed that the responses are conditionally independent given the
covariates and are distributed according to the Kent distribution. In a regression setting we could
have all or only a subset of the model parameters dependent on x. The models of Scealy and Welsh
assume µ = µ(x) is a function of x only, with the remaining parameters κ, β and K∗ being constant
and not dependent on x. Note that this is arguably the most natural and straight forward approach
and is analogous in a sense to modelling the mean of a multivariate normal vector as a function of x
and assuming the covariance matrix is constant.

2.1 The Additive Kent Regression Model

The additive Kent regression model links µ to p− 1 linear functions of x by using the square root of
the additive logistic transformation. That is,

µi(x) =


(

1 +
∑p−1

j=1 exp
(
aTj x

))− 1
2

i = 1

exp

(
aT
i−1x

2

)(
1 +

∑p−1
j=1 exp

(
aTj x

))− 1
2

i = 2, 3, ..., p,
(3)

where µi(x) is the ith component of µ(x) and a =
(
aT1 ,a

T
2 , . . . ,a

T
p−1
)T

is a q(p−1) dimensional vector

of regression coefficients defined on Rq(p−1). In a regression context H = H(x), and a symmetric
choice of H(x) is

H(x) =

(
µ1 µL(x)T

µL(x) H∗L(x)

)
=

(
µ1(x) µL(x)T

µL(x) 1
1+µ1(x)

µL(x)µL(x)T − Ip−1

)
, (4)

where Ip−1 is the (p− 1)× (p− 1) identity matrix and µL(x) = (µ2(x), µ3(x), ..., µp(x))T . As proved
by Scealy and Welsh (2011), this choice of H(x) is unique in the sense that it is the only possible
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symmetric orthogonal matrix with first column µ(x) and with a symmetric non-indefinite value of
H∗L(x).

The additive Kent regression model is defined using (3) and (4). As Scealy and Welsh (2011)

proved, this model has a permutation equivariance property. That is, let A =
(
a1 a2 · · · ap−1

)T
and let y(C) = Cy be a permutation of y that leaves y1 fixed (only (y2, y3, ..., yp)

T gets permuted).
Then y(C) follows an additive Kent regression model with A and K∗ both permuted, and unchanged
shape parameters.

2.2 The Multiplicative Kent Regression Model

The multiplicative Kent regression model links µ to p − 1 linear functions of x by using the square
root of the multiplicative logistic transformation. That is,

µi(x) =

exp
(
aT
i x
2

)(∏i
j=1

(
1 + exp

(
aTj x

)))− 1
2

i = 1, 2, ..., p− 1(∏p−1
j=1

(
1 + exp

(
aTj x

)))− 1
2

i = p.

(5)

or equivalently

µi(x) =



cos {α1(x)} i = 1(∏i−1
j=1 sin {αj(x)}

)
cos {αi(x)} i 6= 1, i 6= p− 1, i 6= p(∏p−2

j=1 sin {αj(x)}
)

cos {αp−1(x)} i = p− 1(∏p−2
j=1 sin {αj(x)}

)
sin {αp−1(x)} i = p,

(6)

where

αj(x) = arctan

(
exp

(
−

(aTj x)

2

))
for j = 1, 2, . . . , p− 1,

and the arctan function is defined on
(
−π

2 ,
π
2

)
. For the multiplicative Kent regression model, H(x) is

defined using a non-symmetric matrix as follows. Let Rij (α) be a p × p plane rotation matrix, that
is Rij (α) is the p× p identity matrix with the (i, i), (i, j), (j, i) and (j, j) elements replaced by cosα,
− sinα, sinα and cosα respectively. Then let

H(x) = R(p−1)(p) (αp−1(x))R(p−2)(p−1) (αp−2(x)) · · ·R12 (α1(x)) . (7)

The advantage of this choice is that it contains the smallest number of plane rotation matrix products
resulting in first column equal to µ(x) from (5).

The multiplicative Kent regression model has an asymptotic (large κ) amalgamation property sim-
ilar to Aitchison (1986, Property 6.12 (a), page 132). That is, assume that y follows a p−dimensional
multiplicative Kent regression model, then for large κ the amalgamation

ya = (y1, y2, ..., yq,
√
y2q+1 + ...+ y2p)

T

is distributed the same as a (q+ 1)-dimensional multiplicative Kent regression model. See Scealy and
Welsh (2011) for further details about asymptotic large κ properties of the Kent regression models.

3 Comparing the Square Root and the Logratio Transformation Ap-
proaches

The logratio transformation approach is one of the most widely used techniques for analysing compo-
sitional data. In particular, the additive logratio transformation defined by

y̆j = log
uj+1

u1
, j = 1, 2, . . . , p− 1, (8)
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where y̆ = (y̆1, y̆2, . . . , y̆p−1)
T ∈ Rp−1, is often applied. The standard approach is to then assume y̆

has a p − 1 dimensional normal distribution, which results in u having an additive logistic normal
distribution (Aitchison, 1986, page 113) and estimation of model parameters is straightforward.

The square root transformation y =
√
u transforms compositional data onto the unit hypersphere

in Rp and we assume u has a squared Kent distribution. One advantage of this approach is that it
handles zeros, however there are two issues which are pointed out by Scealy and Welsh (2011):

(a) The normalising constant c(κ,β) does not exist in a convenient form and involves multidimen-
sional integrals which are difficult to evaluate when p is not small.

(b) The square root transformation maps compositional data directly onto the positive orthant of
the hypersphere only. When the components of u are distributed close to the boundaries, the
fitted Kent model may have significant support outside the positive orthant.

To overcome issue (b), we could instead assume
√
u follows a folded Kent distribution on the positive

orthant (i.e. if y has a Kent distribution, then | y |= (| y1 |, | y2 |, ..., | yp |)T has a folded Kent
distribution). However, the folded Kent distribution in p−dimensions is difficult to work with. As
Scealy and Welsh (2011) mentioned, in many applications we expect the majority of the data to be
distributed away from the boundaries 0 and 1, and as a consequence the concentration parameter
κ will also be at least moderately large. This justifies the use of large κ approximations to address
issues (a) and (b). That is, for large κ the folding can be effectively ignored in estimation and an
approximation for the normalising constant is also available (see Scealy and Welsh (2011) for further
details).

We now demonstrate a particular situation where the squared Kent distribution will work better
than the logistic normal distribution. Suppose we have a compositional data sample and we observe
that a component

√
u1 appears to have a mean close to zero with only a small amount of folding present

(the distribution is roughly symmetric looking). In this situation the square root transformation
coupled with the Kent distribution will be a reasonable approach and from the large κ results in Scealy
and Welsh (2011), it follows that

√
u1 is approximately normal with small mean and variance. We now

undertake a simulation study to compare the logratio approach with the square root transformation
approach under this scenario.

First, we simulate 10,000
√
u1 observations from the folded normal distribution with mean 0.03

and standard deviation 0.01. Plots 1 and 2 in Figure 1 contain a histogram and boxplot of
√
u1.

We then apply the logratio transformation y̆1 = log
(
1−u1
u1

)
and plots 3 and 4 contain the resulting

histogram and boxplot of y̆1. The treatment of y̆1 as normal is not sensible here since the distribution
is highly skewed. The problem is that values of u1 near zero which are close to each other on the
original scale, are quite far apart on the logratio scale. We now consider the scenario where u1 is not
distributed close to zero and repeat the above simulation but use a mean of 0.1 instead of 0.03. Figure
2 contains the resulting histograms and boxplots of

√
u1 and y̆1. In this case, both distributions look

roughly symmetric and either the logratio or the square root transformation may be appropriate. The
differences between the two approaches becomes more apparent when the data is distributed closer to
the boundaries.

The square root transformation has some nice properties and as we will show, adheres to two
out of the three principles of compositional data analysis described by Egozcue (2009). Consider the
following definition of the simplex (in the abstract we set c = 1)

∆p−1 = {(u1, u2, . . . , up)T : ui ≥ 0 (i = 1, 2, . . . , p),

p∑
i=1

ui = c}, (9)

where c > 0 is a known constant. In this case the square root transformation is

y =
1

√
u1 + u2 + ...+ up

(√
u1,
√
u2, ...,

√
up
)T
,

which is always defined since c is assumed greater than zero. This transformation is permutation
invariant (see Egozcue (2009) for a definition) and it is also scale invariant since y(λu) = y(u) for λ >
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Figure 1: Histograms and boxplots of simulated
√
u1 and y̆1 values for mean 0.03.
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Figure 2: Histograms and boxplots of simulated
√
u1 and y̆1 values for mean 0.1.
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0. The square root transformation therefore satisfies two of the compositional data analysis principles.
The third principal called compositional coherence is violated due to the fact that subcompositions
are not compatible with our definition of the simplex given at (9). That is, suppose u1 = 0 and u2 = 0,
then the subcomposition (

u1
u1 + u2

,
u2

u1 + u2

)T
is undefined and is not in ∆1 since u1 + u2 = 0 (recall that c > 0 in definition (9)).

For predictive purposes it is of interest to estimate the quantity E (u). In the case of the squared
Kent distribution, it follows from (2) that

E (u) = Γ2 E
(
y∗2
)
,

where the squared operation on the above matrix and vector is a component wise square. This
expectation can be estimated directly by plugging in estimates of the model parameters (see Scealy and
Welsh (2011) for further details). However, in the case of the logistic normal distribution, estimation of
E (u) is not so straightforward. Suppose we apply the additive logratio transformation (8) and assume
y̆ ∼ Np−1(b,Σ) and let b̂ and Σ̂ be estimates of the mean b and covariance matrix Σ respectively.
Then, to avoid backtransformation bias, we need to compute the following integrals

E (u1) =

∫
Rp−1

1

1 +
∑p−1

m=1 exp (y̆m)
f(y̆)dy̆,

and for j = 2, 3, ...p

E (uj) =

∫
Rp−1

exp (y̆j−1)

1 +
∑p−1

m=1 exp (y̆m)
f(y̆)dy̆,

where f(y̆) is the multivariate normal density of y̆. Note that an estimate of E (u) is obtained by
plugging in b̂ and Σ̂ in f(y̆). These multidimensional integrals are difficult to evaluate when p is not
small, and we need to use for example Monte Carlo methods to compute these which is a disadvantage.

One other major issue with the logratio transformation is that it does not allow any zero com-
ponents in the compositions. To apply the logratio approach in this case, we could adopt one of
the strategies suggested by Aitchison (1986, pages 266-274), namely collapsing categories, modelling
zeros separately or replacing zeros by small positive values. In general collapsing categories is not
ideal due to the fact that information is lost during this process. Aitchison and Kay (2004) consid-
ered modelling zeros separately, but as these authors stated the computations needed are awkward
(for example, some multidimensional integrals need to be computed using a MCMC approach). Zero
replacement strategies for rounded zeros have been considered by various authors (for example, see
Fry et. al. (2000), Mart́ın-Fernández et. al. (2003) and Palarea-Albaladejo et. al. (2007)). These
zero replacement strategies are imputation methods and the drawback is that by treating the zeros as
missing values, imputation variance is introduced which will ultimately affect estimates of both b and
Σ. Notice that E (u) in the logistic normal distribution case is a function of both b and Σ, and the
estimator of E (u) relies on having good estimates of both b and Σ available.

4 An Example

We now compare the logratio approach with the square root transformation approach using Data
34 from Appendix D of Aitchison (1986). Aitchison (1986) used this dataset to demonstrate a zero
replacement strategy since 5 out of 30 observations contained a zero component. Bacon-Shone (1992),
Mart́ın-Fernández et. al. (2003) and Scealy and Welsh (2011) also analysed this dataset and used it
to compare different methodologies. This dataset consists of foraminifer, a marine micro-organism, at
30 different depths and contains p = 4 components.

Figure 3 contains plots of
√
u1,
√
u2,
√
u3 and

√
u4 versus depth (the ordering of the components

is the same as given in Appendix D of Aitchison (1986)). Interestingly, there appears to be an outlier
for
√
u4 (observation 24 appears to be far away from the rest of the data). Scealy and Welsh (2011)
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Figure 3: Plots of
√
u1,

√
u2,

√
u3 and

√
u4 versus depth.

also identified this observation as an outlier, but Aitchison (1986), Bacon-Shone (1992) and Mart́ın-
Fernández et. al. (2003) did not. We suspect that the G. obsea and G. triloba proportions may
have been swapped by mistake for observation 24. If we make this swap, then there appears to be a
relationship between

√
u4 and depth (

√
u4 appears to decrease with depth). Both

√
u3 and

√
u4 are

distributed close to zero and the distributions look roughly symmetric about the means, implying that
the square root transformation methodology of Scealy and Welsh (2011) is reasonable for this dataset.

Scealy and Welsh (2011) applied the multiplicative Kent regression model to this example dataset
and showed that the model appeared to fit the data well. Here we apply the additive Kent regression
model instead and we model the mean direction µ(x) using

µ1(x) =
1(

1 +
∑3

j=1 exp (aj1 + aj2x)
) 1

2

, µ2(x) =
exp

(
a11+a12x

2

)(
1 +

∑3
j=1 exp (aj1 + aj2x)

) 1
2

,

µ3(x) =
exp

(
a21+a22x

2

)(
1 +

∑3
j=1 exp (aj1 + aj2x)

) 1
2

, and µ4(x) =
exp

(
a31+a32x

2

)(
1 +

∑3
j=1 exp (aj1 + aj2x)

) 1
2

,

where x represents depth and a11, a12, a21, a22, a31 and a32 are six scalar regression coefficients.
We estimate the parameters associated with this additive Kent regression model by applying the
estimation techniques in Scealy and Welsh (2011). Note that before fitting the model we corrected the
suspected typo in observation 24. After fitting the model, a22 did not appear to be significant and so
it was removed, and then the model was refitted with the remaining five regression coefficients only.

Figure 4 contains plots of the observed values of u versus depth and the lines on the plots are the
estimates of E (u|x) (the correction to observation 24 has also been implemented in the plots). The
estimates of E (u|x) are very similar to those obtained by Scealy and Welsh (2011) in the case of the
multiplicative Kent regression model and therefore the additive Kent regression model also appears
to fit this data.

An alternative approach is to fit linear models to the additive logratio transformed data, however
in order to apply this approach we need to somehow eliminate the zeros first. To do this we apply the
multiplicative zero replacement strategy suggested by Mart́ın-Fernáadez et. al. (2003), page 262 and
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Figure 4: Plots of u1, u2, u3 and u4 versus depth.
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Figure 5: Plots of y̆1, y̆2, y̆3 versus depth.

Proceedings of the 4th International Workshop 
on Compositional Data Analysis (2011)

Egozcue, J.J., Tolosana-Delgado, R. and Ortego, M.I. (eds.) 
ISBN: 978-84-87867-76-7

8



hence we replace u by r = (r1, r2, ..., rp) using

rj =

{
δj , if uj = 0,

(1−
∑

k|uk=0 δk)uj , if uj > 0.

If we assume that the zero’s are a result of rounding error and are not essential zeros, then each δj is
in the range (0, 0.005).

Figure 5 contains plots of the additive logratios versus depth for three different choices of δj (i.e.
δj = 0.005, δj = 0.001 and δj = 0.0001). If δj is in the range [0.001, 0.005] and if we correct observation
24, then the following linear model is plausible (y̆3 appears to roughly decrease linearly with depth)

y̆3 = b31 + b32x+ ε3, (10)

where ε3 ∼ N(0, σ2) and b31 and b32 are scalar regression coefficients. However, the assumption that
each δj ≥ 0.001 is very strong and it is still plausible that the correct values of δj are in the range
[0, 0.001]. That is, some of the five zero components may represent a complete absence or near absence
of the species at the depth measured. If this is the case, then model (10) should not be fitted. The
advantage of the Kent regression model approach over the logratio approach is that it does not lead
to introducing additional uncertainties by having to impute δj .

5 Conclusion

As we have shown, the square root transformation approach has some nice properties and will work
better than the logratio approach in certain situations such as when the compositional data is dis-
tributed close to the boundaries of the simplex. As we demonstrated, the square root transformation
model fit the example dataset well and by comparison, the logratio approach was much more prob-
lematic to implement due to the presence of zeros.

Future research will involve exploring the folding issue further and to extend the Kent regression
model to other scenarios such as the case where we have correlated compositional data or where κ, β
and K∗ also depend on x.
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