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Abstract

Perturbation and powering are two operations in the simplex that define a vector-space struc-
ture. Perturbation and powering in the simplex play the same role as the sum and product by
scalars in real space. A standard Dirichlet random composition can be shifted by perturbation, and
scaled powering by a real scalar. The obtained random composition has a shifted-scaled Dirichlet
distribution. The procedure is analogous to standardization of real random variables. The derived
distribution is a generalization of the Dirichlet one, and it is studied from a probabilistic point
of view. In the simplex, considered as an Euclidean space, the Aitchison measure is the natural
(Lebesgue type) measure, which is compatible with its operations and metrics. Therefore, a natural
way of describing the generalized (shifted-scaled) Dirichlet probability distributions is using prob-
ability densities with respect to the Aitchison measure. This density representation is compared
with the traditional probability density with respect to the Lebesgue measure. In particular, the
center and variability for both representations are compared.

1 Introduction

Compositional data, or parts of some whole, have been originally defined as non-negative bounded-sum
data. The sample space for this kind of data is the simplex, denoted

SD = {x = (x1, . . . , xD), xi > 0,
D∑

i=1

xi = κ} ,

where κ is a constant, usually taken to be one or one hundred. Given the fact that compositional
data only carry relative information, the requirement of scale invariance is natural, and they can be
understood as equivalence classes of vectors passing through the origin (Barceló-Vidal et al., 2001).
From this perspective, a composition in the simplex is a representative of an equivalence class.

Historically the prevalent model for compositional data was the Dirichlet distribution (Gupta and
Richards, 2001). The Dirichlet distribution provides a handy tool for modeling data restricted to the
unit simplex. It has been widely used in geology, biology, and chemistry for handling compositional
data such as rates, percentages and proportions (Wong, 1998). For example, one may be interested in
modeling the proportions of a given set of mineral components in rocks, the proportions of nucleotides
in a DNA sequence, the proportions of time people spend a day in different activities among work,
sport and extra work, or the impact of the market share distribution on industry performance. The
drawbacks of the Dirichlet distribution are described extensively in Aitchison (1986, p. 58-60). They
include, among others, a completely negative correlation structure and a very strong implied inde-
pendence structure, namely full partition independence. As stated in Aitchison (1986, p. 305) “The
realization that the Dirichlet class leans so heavily towards independence has prompted a number
of authors (Connor and Mosimann, 1969; Darroch and James, 1974; Mosimann, 1975; James, 1981;
James and Mosimann, 1980) to search for generalizations of the Dirichlet class with less independence
structure. Their efforts have been met with only limited success ...”. One of the generalizations was
the scaled Dirichlet distribution, which is just a perturbation (shift) in the simplex and thus belongs
to the same class of distributions as the Dirichlet one (Monti et al., 2011).

In this paper we present a further generalization of the Dirichlet distribution which naturally
includes the scaled Dirichlet, namely the distribution of a random vector obtained after applying
the perturbation and powering operations to a Dirichlet random composition. Perturbation and
powering are two operations that define a vector-space structure in the simplex (Billheimer et al.,
2001; Pawlowsky-Glahn and Egozcue, 2001; Aitchison et al., 2002). They play the same role as sum

1

Proceedings of the 4th International Workshop 
on Compositional Data Analysis (2011)

Egozcue, J.J., Tolosana-Delgado, R. and Ortego, M.I. (eds.) 
ISBN: 978-84-87867-76-7

1



and product by scalars in real space. When a random variable is standardized, first the distribution is
centered on the mean through the sum operation, and second it is divided by the standard error through
multiplication. This procedure can be translated into the compositional framework starting with a
Dirichlet random composition and considering the Aitchison geometry of the simplex (Pawlowsky-
Glahn and Egozcue, 2001). This motivates the name shifted-scaled Dirichlet distribution. Shifted
refers to perturbation in the simplex; it was previously called scaled due to the multiplicative character
of perturbation; now scaled means scaling in the simplex, i.e. powering, and therefore the extended
generalization of the distribution is related to this kind of scaling. The derived distribution, which
is a generalization of the Dirichlet one, is studied from a probabilistic point of view. In particular,
the resulting probability density function is presented both with respect to the Lebesgue measure
on real space and to the Aitchison measure on the simplex. This latter measure is compatible with
the Euclidean space structure of the simplex (Pawlowsky-Glahn and Egozcue, 2001). The center and
variability of the shifted-scaled Dirichlet distribution are studied in both representations.

In Section 2, some background information on compositional data analysis and on working in
coordinates in the simplex is introduced, as well as the main ideas on center and variability of random
compositions. In Section 3, we introduce the generalization of the Dirichlet distribution within the
Aitchison geometry that we call shifted-scaled Dirichlet distribution. The section starts reviewing
the Dirichlet (Kotz et al., 2000) and scaled Dirichlet distributions (Monti et al., 2011). The way
to construct the new distribution, as well as some of its properties and features, are described in
Subsection 3.3.

2 Compositional data in the simplex

2.1 The vector space structure of the simplex

In SD, an internal operation, ⊕, called perturbation, and an external operation, ⊙, called powering,
are defined (Aitchison, 1986). Given two D-part compositions x,y ∈ SD the perturbation operation
x⊕ y is defined by

x⊕ y =
κ · (x1y1, . . . , xDyD)
x1y1 + . . .+ xDyD

= C (x1y1, . . . , xDyD) , (1)

where the closure operator C standardizes the contained vector by dividing each component by the
sum of its components and multiplying them by the constant κ so that, after closure, the components
sum to κ. The symbol ⊕ emphasizes the analogy with vector addition in real space. Perturbation
defines a commutative group structure on the simplex with identity (1/D, . . . , 1/D) and inverse x−1 =
C (1/x1, . . . , 1/xD). Given a real number α and a composition x ∈ SD, powering of x is

α⊙ x = C (xα1 , . . . , x
α
D) . (2)

Powering is analogous to multiplication by scalars in real space. The symbol ⊙ emphasizes the analogy
with multiplication by a scalar in real space.

Furthermore, an inner product 〈·, ·〉a can be defined

〈x,y〉a =
D∑

i=1

ln
xi

gm(x)
ln

yi
gm(y)

, (3)

where gm(x) denotes the geometric mean of the components of x (Billheimer et al., 2001; Pawlowsky-
Glahn and Egozcue, 2001).

With these operations (SD,⊕,⊙, 〈·, ·〉a) has a (D − 1)-dimensional real Euclidean vector space
structure. The geometry on the simplex, in which to consider statistical modeling, is called simplicial
or Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001). To complete the metric vector space
structure of the simplex we report the expression for the Aitchison distance between two compositions
x and y in SD

da(x,y) =

√√√√ 1

D

∑

i<j

(
ln
xi
xj

− ln
yi
yj

)2

. (4)
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The Aitchison distance is compatible with the vector space structure of the simplex. Given three
compositions x, y and p in SD and a scalar α the following properties hold

da(x,y) = da(p⊕ x,p⊕ y) , da(α⊙ x, α⊙ y) = |α|da(x,y) . (5)

In our discussion we use an orthonormal basis in SD for deriving coordinate representations of
compositional vectors. Given an orthonormal basis {e1, . . . , eD−1} of SD, which elements satisfy the
conditions 〈ei, ei〉a = 1 and 〈ei, ej〉a = 0, (i = 1, . . . , D − 1, i 6= j), a composition x ∈ SD can be
expressed as a linear-combination,

x = (ε1 ⊙ e1)⊕ (ε2 ⊙ e2)⊕ . . .⊕ (εD−1 ⊙ eD−1) =
D−1⊕

i=1

(εi ⊙ ei) ,

where the symbol
⊕

represents repeated perturbation. The coefficients εi are the coordinates of
the composition x ∈ SD with respect to the given orthonormal basis, i.e. εi = 〈x, ei〉a, and the
vector ε = (ε1, . . . , εD−1) is a vector of RD−1. For a fixed basis they are uniquely determined, given
that a composition can always be represented in a unique way by its coordinates with respect to
an orthonormal basis. Once an orthonormal basis has been chosen, all standard statistical methods
can be applied to coordinates and transferred to the simplex preserving their properties (Mateu-
Figueras et al., 2011). The vector of coordinates is obtained applying to a composition x a function,
which has been called isometric-logratio-transformation and denoted ilr (Egozcue et al., 2003). This
transformation goes from SD to R

D−1 and is defined by

ilr(x) = (〈x, e1〉a, . . . , 〈x, eD−1〉a) . (6)

The resulting vector is a (D− 1) vector of real coordinates. Other frequent representations of compo-
sitions involve transformations based on log-ratios, such as the additive log-ratio (alr) transformation
and the centered log-ratio (clr). The alr transformation assigns a vector of coordinates

alr(x) = (a1, . . . , aD−1) =

(
ln
x1
xD

, . . . , ln
xD−1

xD

)
(7)

to the composition x, but the coordinates obtained correspond to an oblique basis (Egozcue and
Pawlowsky-Glahn, 2006). The inverse transformation is written

x = C (ea1 , . . . , eaD−1 , 1) . (8)

On the other hand the clr transformation is defined as

clr(x) = (c1, . . . , cD) =

(
ln

x1
gm (x)

, . . . , ln
xD

gm (x)

)
, (9)

but its coefficients are coordinates in a generating system, not coordinates with respect to a basis. An
inverse transformation also exists in this case and the composition x can be written in terms of the
clr-coefficients as

x = C (ec1 , . . . , ecD) . (10)

2.2 The Aitchison measure on the simplex

Traditionally, a Lebesgue measure is used in the simplex, in particular when the Dirichlet distribution
is involved. A composition x in SD is represented e.g. by (D − 1) parts x− = (x1, x2, . . . , xD−1)
living in a (D− 1)-dimensional space, because the last component of x, xD, is implicitly equal to one
minus the sum of the others, so that all D components sum to one. The vector x− is considered as
an element of RD−1 and the measure in this space is then taken as the Lebesgue measure λ.

Pawlowsky-Glahn (2003) defined an alternative measure on the simplex, denoted as λa and called
Aitchison measure, which is compatible with the inner vector space structure of the simplex. The
same strategy can be used to define a Lebesgue type measure on any Euclidean space (Eaton, 1983).
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A simple way to define the Aitchison measure is to translate the Lebesgue measure in the space
of orthonormal coordinates into the simplex. Let ei, (i = 1, 2, . . . , D − 1) be an orthonormal basis
of SD. If x ∈ SD, then its coordinates are denoted ilri(x), (i = 1, 2, . . . , D − 1). In the space of
coordinates, RD−1, a hyper-parallelepiped R is characterized by two points, say a = (a1, a2, . . . , aD−1),
b = (b1, b2, . . . , bD−1). The hyper-volume (Lebesgue measure) of the hyper-parallelepiped is the
product of the lengths of the edges in the direction of each coordinate, this is

λD−1(R) =
D−1∏

i=1

|bi − ai| ,

where the Lebesgue measure on R
D−1 has been subscripted with D− 1 in order to distinguish it from

the previous λ. Their difference is not the space where they are defined but on how the elements of
R
D−1 are interpreted: (D− 1) parts of a composition, x−, for λ; and (D− 1) ilr-coordinates for λD−1.

Using the inverse transformation ilr−1, the Aitchison measure of a subset S = ilr−1(R) ⊂ SD, with
R ⊂ R

D−1, is defined as
λa(S) = λa(ilr

−1(R)) = λD−1(R) .

The measure for hyper-parallelepipeds is extended to the whole sigma-algebra following the general
measure theory (Athreya and Lahiri, 2006; Ash and Doléans-Dade, 2000). Invariance with respect to
the choice of the orthonormal basis derives from this property in R

D−1. The Aitchison measure is
absolutely continuous with respect to λ.

Consider a probability measure P defined on the simplex. If P is absolutely continuous with
respect to λ and λa, the Radon-Nikodym derivative of P with respect to each of the two measures is
a probability density, and it is denoted dP/dλ, respectively dP/dλa. Their integrals on a measurable
set, S ⊆ SD, are the corresponding probabilities:

P(S) =

∫

S

dP

dλ
dλ =

∫

S

dP

dλa
dλa .

The relationship between the two probability densities, dP/dλa and dP/dλ, is given by the chain rule
for measures

dP

dλ
=
dP

dλa
· dλa
dλ

,

where the Jacobian dλa/dλ describes the relationship between the Lebesgue measure for parts of the
simplex and the Aitchison measure. As shown in (Mateu-Figueras, 2003, p. 53) or in the appendix,
this Jacobian is

dλa
dλ

=
1√

D x1 · · · xD
. (11)

In the next section the Dirichlet, scaled Dirichlet and shifted-scaled Dirichlet distributions are analyzed
changing the measure from λ to λa.

2.3 Center and variability

As shown by Tolosana-Delgado (2006), characterization of the variability of a random composition X

following the development by Eaton (1983) can be summarized as follows. Consider two log-contrasts

of X, with coefficients z
(j)
1 , z

(j)
2 , . . . , z

(j)
D such that

Z(j)(X) =
D∑

i=1

z
(j)
i logXi ,

D∑

i=1

z
(j)
i = 0 , j = 1, 2.

The variability (second order moment) of a random composition X is a bilinear form which assigns
a covariance to each couple of log-contrasts Z(1)(X), Z(2)(X). Depending on how Z(1)(X), Z(2)(X)
are represented, the bilinear form takes also different forms, although all of them are related. For
instance, log-contrasts can be expressed as

Z(j)(X) =

D∑

i=1

z
(j)
i log

Xi

gm(X)
=

D∑

i=1

z
(j)
i clri(X) , j = 1, 2,
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and therefore,

Cov
(
Z(1), Z(2)

)
= z(1)

′
Γz(2) , [Γ]ij = Cov(clri(X), clrj(X)) , i, j = 1, 2, . . . , D .

Alternatively, the log-contrasts can be represented as linear combinations of the (D − 1) coordinates
ilr(X) of X with respect to an orthonormal basis of the simplex e1, e2, . . . , eD−1. Then, the (D −
1, D−1)-matrix Υ = Cov(ilr(X)), represents the second order moment of X. Similarly, the variability
can be represented by the (D − 1, D − 1)-matrix Σ, when the log contrasts are expressed as a linear
combination of alr-coordinates, with Σ = Cov(alr(X)). The relationship between the covariance
matrices Σ, Γ and Υ, is (Mateu-Figueras, 2003; Aitchison, 1986)

Γ = F⋆ΣF⋆
′ ,

Υ =
(
U′F⋆

)
Σ
(
U′F⋆

)′
= U′ΓU ,

(12)

where U is a (D,D − 1)-matrix with column vectors ui = clr (ei) , i = 1, . . . , (D − 1) , and F⋆ is a
(D,D − 1)-matrix

F⋆ =
1

D




D − 1 −1 . . . −1
−1 D − 1 . . . −1
...

...
. . .

...
−1 −1 . . . D − 1
−1 −1 . . . −1



,

A global measure of variability with respect to the Aitchison measure λa is the metric variance
(Pawlowsky-Glahn and Egozcue, 2001, 2002). It is equivalent to the concept of total variance (Aitchi-
son, 1997, 2002), and describes the dispersion around a given point. Consider a random composition
X with sample space SD. The dispersion or metric variance around ξ ∈ SD is the expected value of
the squared distance between X and ξ

Mvar(X, ξ) = E
(
d2a (X, ξ)

)
, (13)

where da is the Aitchison distance defined above. The metric variance can be computed directly using
coordinates. Assuming the metric variance of X exists, the center of the distribution of X is that
element ξ ∈ SD which minimizes Mvar(X, ξ). It is usually denoted by Cen(X) (Aitchison, 1997, 2002;
Pawlowsky-Glahn and Egozcue, 2001, 2002). Therefore, the metric variance around the center Cen(X)
of the distribution of X is given by Mvar(X,Cen(X)) or Mvar(X) for short. The metric variance is
the trace of the covariance matrices Γ, and Υ,

Mvar(X) = trace (Γ) = trace (Υ) . (14)

Aitchison (1997, 2002) defines the total variance as the trace of matrix Γ. Mateu-Figueras (2003), using
the relationship (12), proves that Mvar(X) = trace (Γ). Also, Aitchison (1986) proves that the trace
of matrices Γ and Σ are not equal. In particular, it can be shown that trace (Γ) = trace (Σ)−D−1j′Σj

where j represents a column vector of units (Aitchison, 1986, p. 103).

3 The shifted-scaled Dirichlet distribution

This section has two main goals: to revise the Dirichlet and scaled Dirichlet distribution, and to
introduce a new generalization of the latter distribution called shifted-scaled Dirichlet distribution.

3.1 Dirichlet distribution

Definition 3.1 (Dirichlet distribution (Wilks, 1962; Kotz et al., 2000)) A random vector
X ∈ SD has a D-variate Dirichlet distribution with parameter α = (α1, . . . , αD) ∈ R

D
+ if it has density

function

f(x) =
dP

dλ
(x) =

Γ(α+)∏D
i=1 Γ(αi)

D∏

i=1

xαi−1
i , (15)

where P is the Dirichlet probability measure, α+ =
∑D

i=1 αi, and Γ denotes the Euler gamma function.
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This distribution will be denoted X ∼ DD(α). The number of its parameters is D. Aitchison (1986)
pointed out that the variables in a Dirichlet random vector exhibit strong conditional independence
relationships. However, the Dirichlet distribution is still popular for analyzing compositional data
because of its conjugate property with the multinomial likelihood in Bayesian analysis and its com-
putational efficiency.

Equation (15) corresponds to a classical density, i.e. it is a Radon-Nikodym derivative with respect
to the Lebesgue measure in the space of (D − 1) parts. Using (11) we can change the measure and
express this density with respect to the measure λa (Mateu-Figueras and Pawlowsky-Glahn, 2005).
The resulting expression for the Dirichlet density function is

fa(x) =
dP

dλa
(x) =

Γ(α+)
√
D

∏D
i=1 Γ(αi)

D∏

i=1

xαi

i . (16)

Property 3.1 (Genesis) The Dirichlet distribution can be obtained by normalizing a set of inde-
pendent, equally scaled gamma random variables (r.v.s) Wi ∼ Ga(αi, 1), i = 1, . . . , D. Formally, if
X = C(W) ≡ W/W+ , where W+ =

∑D
i=1Wi ∼ Ga(α+, 1) , then X ∼ DD(α).

Property 3.2 (Marginals and Conditionals) Let X ∼ DD(α). The following properties hold:

• For D = 2, the Dirichlet reduces to the beta distribution, as can be derived from Equation (15),
which can be regarded as a multivariate beta distribution.

• The marginal
(
X1, . . . , Xk, 1−

∑k
i=1Xi

)
is Dk+1(α1, . . . , αk, α+ −∑k

i=1 αi). It follows that the

marginal distribution of each Xi is beta with parameters (αi, α+ − αi).

• The conditional distribution
(
X1, . . . , Xk|Xk+1, . . . , XD, 1−

∑D
j=k+1Xj

)
is Dk(α1, . . . , αk).

See the appendix for a proof.

Property 3.3 The Dirichlet density has complete permutation symmetry.

Proof. Any Xi and Xj (i, j = 1, . . . , D) may be interchanged, as long as the corresponding αi
and αj are interchanged at the same time. As can be seen in Eqs. (15) and (16), the density is the
same, independently of the measure of reference. 2

Property 3.4 (Location) Let X ∼ DD(α). The mode and the mean of a Dirichlet r.v., with respect
to the measures λ and λa, are:

mode(X) =

(
α1 − 1

α+ −D
, . . . ,

αD − 1

α+ −D

)
,

modea(X) =

(
α1

α+
, . . . ,

αD
α+

)
,

(17)

E(X) =

(
α1

α+
, . . . ,

αD
α+

)
,

E(X)a = C
(
eψ(α1), . . . , eψ(αD)

)
,

(18)

where ψ(t) = ∂ ln Γ(t)
∂t is the digamma function (Abramovitz and Stegun, 1965) and C is the closure

operator.

Proof. To find the mode of the Dirichlet distribution we have to maximize the log density
subject to the unit sum constraint

∑
i xi = 1; this can be accomplished using Lagrange multipliers

(Monti et al., 2011). 2

Note that the mean E(X) of the Dirichlet distribution coincides with the normalized parameter
vector α, the same as the mode of X with respect to the Aitchison measure. Also, α+ may be regarded
as a precision parameter, as when it increases, the distributions become more tightly concentrated
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around the mean. With respect to the Lebesgue measure, when the components of α are all greater
than 1, the density has a single mode; otherwise when the components of α are all less than 1, the
density is unbounded when approaching the edges and corners of the simplex. As αi → 1 (i = 1, . . . , D)
their sum tends to D and the Dirichlet probability function becomes nearly uniform.

Property 3.5 (Measures of dispersion) Let X ∼ DD(α), the variance and covariance with re-
spect to the measure λ are

Var(Xi) =
αi(α+ − αi)

(α+)2(α+ + 1)
=

E(Xi)(1− E(Xi))

(α+ + 1)
,

Cov(Xi, Xr) = − αiαr
(α+)2(α+ + 1)

= −E(Xi)E(Xr)

(α+ + 1)
,

(19)

which reveals that all pairwise correlations are negative.

Property 3.6 (Metric variance) Given a random vector X ∼ DD(α) defined in the unit simplex
SD the metric variance of X is

Mvar(X) =
D − 1

D

(
ψ′(α1) + . . .+ ψ′(αD)

)
, (20)

where ψ′(t), (t > 0) is the trigamma function (Abramovitz and Stegun, 1965).

Proof. To prove this result, recall the expression for the covariance matrix of alr (X) (Eq. 7)
provided by Aitchison (1986, p. 60)

Var

(
ln
Xi

Xj

)
= ψ′(αi) + ψ′(αj) , Cov

(
ln
Xi

Xk
, ln

Xj

Xk

)
= ψ′(αk) . (21)

The two Equations in (21) are the elements of the variance and covariance matrix Σ = Cov(alr(X)).
Using the relationship (12) between the matrix representation Σ and Γ it is easy to find the trace (Γ).
For example, when D = 3, the matrix Γ assumes the form

Γ =
1

9




4ψ′(α1) + ψ′(α2) + ψ′(α3) ψ′(α3)− 2ψ′(α1)− 2ψ′(α2) ψ′(α2)− 2ψ′(α1)− 2ψ′(α3)
ψ′(α3)− 2ψ′(α1)− 2ψ′(α2) 4ψ′(α2) + ψ′(α1) + ψ′(α3) ψ′(α1)− 2ψ′(α2)− 2ψ′(α3)
ψ′(α2)− 2ψ′(α1)− 2ψ′(α3) ψ′(α1)− 2ψ′(α2)− 2ψ′(α3) 4ψ′(α3) + ψ′(α1) + ψ′(α2)


 ,

whose trace is equal to 2
3 (ψ

′(α1) + ψ′(α2) + ψ′(α3)). 2

Note that, in general, when the number of components of X is D, the elements of the variance and
covariance matrix Γ are:

Var

(
ln

Xi

gm (X)

)
=

(
D − 1

D

)2

ψ′(αi) +
1

D2

D∑

j=1, j 6=i

ψ′(αj) ,

Cov

(
ln

Xi

gm (X)
, ln

Xj

gm (X)

)
= −

(
D − 1

D2

)
(ψ′(αi) + ψ′(αj)) +

1

D2

D∑

k=1, k 6=i,j

ψ′(αk) .

3.2 Scaled Dirichlet distribution

In a Bayesian analysis of a multinomial situation it is necessary to choose a suitable prior from the set
of all probability measures on the simplex. Conjugate analysis leads to the Dirichlet-family as a natural
choice. But while this way is mathematically convenient, it is not the most appropriate solution; e.g. it
does not take into account relative positions between categories or multinomial cells (Lochner, 1975).
In this framework Savage, in a personal and unpublished work, presented a transformed Dirichlet
density (Dichey, 1968) as an alternative to the Dirichlet density, taking

x̃i =
pixi∑D
i=1 pixi

, xi =
x̃i/pi∑D

i=1(x̃i/pi)
,
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where X ∼ DD(α) and each pi > 0. This kind of generalization permits some more flexibility in the
choice of a prior in multinomial problems. The probability density function of X̃ is the scaled Dirichlet
distribution (Monti et al., 2011).

Definition 3.2 (Scaled Dirichlet distribution (Dichey, 1968).) A random vector X ∈ SD
has a scaled Dirichlet distribution with parameters α = (α1, . . . , αD) and β = (β1, . . . , βD) ∈ R

D
+ if its

density function is

fs(x) =
dPs
dλ

(x) =
Γ(α+)∏D
i=1 Γ(αi)

∏D
i=1 β

αi

i x
αi−1
i

(
∑D

i=1 βixi)
α+

, (22)

where Ps is the scaled Dirichlet probability measure, α+ =
∑D

i=1 αi, and Γ denotes the gamma function.
This distribution will be denoted X ∼ SDD(α,β).

The number of parameters is 2D. If we fix the parameter β equal to (1, 1, . . . , 1) , C(1, 1, . . . , 1) , or
C(β, β, . . . , β) , we obtain a Dirichlet model. We can express Equation (22) with respect to the measure
λa in the same way we did for the Dirichlet distribution,

fsa(x) =
dPs
dλa

(x) =
Γ(α+)

√
D

∏D
i=1 Γ(αi)

∏D
i=1 (βixi)

αi

(
∑D

i=1 βixi)
α+

. (23)

Property 3.7 (Genesis) The scaled Dirichlet distribution can be obtained by normalizing a vector
of D independent, scaled, gamma r.v.s Wi ∼ Ga(αi, βi) , i = 1, 2, . . . , D . Formally, if X = C(W)
then X ∼ SDD(α,β).

Note that the scaled Dirichlet distribution is obtained removing the requirement of equal scaled
parameters for the gamma r.v.s. in Property 3.1. The scaled Dirichlet distribution is one of the
generalizations of the Dirichlet model we can find in the literature. Nevertheless, the scaled Dirichlet
distribution can also be obtained starting from a perturbed random composition with a Dirichlet
density (Monti et al., 2011). In fact, let X ∼ DD(α) be a random composition defined in SD, and let
p ∈ SD be a composition. The random composition X̃ = p ⊕X has distribution SDD(α,β = p−1).
Note that in this case the β parameter is a composition and the number of parameters of the model
is 2D − 1. The consequence is that the parameter space β ∈ R

D
+ specified in Definition 3.2 should be

substituted by β ∈ SD, because proportional β’s lead to equal distributions. Thus, taking into account
the algebraic-geometric structure of the simplex, the scaled Dirichlet density is just a translation (shift)
of a Dirichlet density in the simplex. It follows that the Dirichlet and the scaled Dirichlet belong to
the same class of distributions and not to two different classes.

Property 3.8 (Marginals) Let X̃ ∼ SDD(α,β). When D=2 the densities defined in (22) and
(23) correspond respectively to

fs(x) =
dPs
dλ

(x) =
1

B(α1, α2)

βα1

1 xα1−1βα2

2 (1− x)α2−1

(β1x+ β2(1− x))α1+α2
, (24)

and

fsa(x) =
dPs
dλa

(x) =

√
2

B(α1, α2)

(β1x)
α1(β2(1− x))α2

(β1x+ β2(1− x))α1+α2
. (25)

Property 3.9 The scaled Dirichlet density has complete permutation symmetry.

Proof. Any Xi and Xj (i, j = 1, . . . , D) may be interchanged, as long as the corresponding αi,
αj , and βi, βj , are interchanged at the same time. As can be seen in Eqs. (22) and (23), the density
is the same, independently of the measure of reference. 2

Property 3.10 (Location) The mode and the expected value of X̃ ∼ SDD(α,β) with respect to
the measure λa are, respectively,

modea(X̃) =(⊖β)⊕modea(X) ,

Ea(X̃) =(⊖β)⊕ Ea(X) ,
(26)
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where X ∼ DD(α) and ⊖ is the inverse operation of the perturbation, by analogy with standard
operations in real space.

For a proof see Monti et al. (2011).
For a composition X̃ ∼ SDD(α,β), there is no closed form for mode(X̃) and E(X̃) with respect

to the Lebesgue measure λ in real space. It is necessary to use numerical integration to obtain them.
Equation (26) shows how β operates in a simplicial way. The vector of parameters β acts on the

location of X̃, and not on the scale; i.e. it is not related to the measure of scale. Moreover, for α a
vector of constants (α = (α, α, . . . , α)), the mean and the mode with respect to the Aitchison measure
coincide and are the neutral element in the simplex.

Property 3.11 (Measures of dispersion) The metric variance for X̃ ∼ SDD(α,β) coincides
with the metric variance for X ∼ DD(α) given in Equation (20).

Proof. The metric variance is invariant under perturbation (see Equation(5)). This property is
equivalent to invariance under translation in real space. 2

There is no closed form for the covariance matrix of a scaled Dirichlet with respect to the Lebesgue
measure λ for (D− 1) parts of the composition. It is necessary to use numerical integration to obtain
them.

3.3 The shifted-scaled Dirichlet distribution

The aim of this section is to study the distribution of a random composition obtained after applying
the perturbation and powering operations to a Dirichlet random composition, i.e, the density of the
composition X̃ = p⊕ (a⊙X) , with p ∈ SD, a ∈ R+ and X ∼ DD(α).

Definition 3.3 (Shifted-scaled Dirichlet distribution) A random vector X ∈ SD has a shifted-
scaled Dirichlet distribution with parameters α = (α1, . . . , αD) ∈ R

D
+ , p = (p1, . . . , pD) ∈ SD and

a ∈ R+ if its density function is

fps(x) =
dPps
dλ

(x) =
Γ(α+)∏D
i=1 Γ(αi)

1

aD−1

∏D
i=1 p

−(αi/a)
i x

(αi/a)−1
i(∑D

i=1 (xi/pi)
(1/a)

)α+
, (27)

where Pps is the shifted-scaled Dirichlet probability measure, α+ =
∑D

i=1 αi, and Γ is the gamma
function. This distribution will be denoted X ∼ pSDD(α,p, a).

The number of parameters is 2D. Furthermore, for a = 1 a scaled Dirichlet model with parameters
α and ⊖p is obtained. If a = 1 and the vector p = C(1, 1, . . . , 1), or C(p, p, . . . , p) for some constant
p, we obtain a Dirichlet model because they correspond to the neutral elements with respect to the
corresponding operations.

We can express Equation (27) with respect to the measure λa, in the same way we did for the
scaled Dirichlet density,

fpsa(x) =
dPps
dλa

(x) =

√
DΓ(α+)∏D
i=1 Γ(αi)

1

aD−1

∏D
i=1 (xi/pi)

(αi/a)

(∑D
i=1 (xi/pi)

(1/a)
)α+

. (28)

Property 3.12 (Marginals) When D=2 the densities defined in (27) and (28) correspond respec-
tively to

fps(x) =
dPps
dλ

(x) =
1

aB(α1, α2)

(1/p1)
α1/a x(α1/a)−1 (1/p2)

α2/a (1− x)(α2/a)−1

(
(x1/p1)

1/a + ((1− x)/p2)
1/a
)α+

; (29)

fpsa(x) =
dPps
dλa

(x) =

√
2

aB(α1, α2)

(x/p1)
α1/a ((1− x)/p2)

α2/a

(
(x1/p1)

1/a + ((1− x)/p2)
1/a
)α+

. (30)
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Property 3.13 The shifted-scaled Dirichlet density has complete permutation symmetry.

Proof. Any Xi and Xj (i, j = 1, . . . , D) may be interchanged, as long as the corresponding αi,
αj , and pi, pj , are interchanged at the same time. As can be seen in Eqs. (27) and (28), the density
is the same, independently of the measure of reference. 2

Figure 1 provides a graphical comparison between the classical Lebesgue and the Aitchison measure

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

(a.1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(a.2)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

(b.1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(b.2)

Figure 1: Shifted-scaled Dirichlet density curves when D = 2. Figures (a.1) and (b.1) with respect to the restriction of
the Lebesgue measure λ on the [0, 1] interval; (a.2) and (b.2) with respect to the Aitchison measure λa on S

2.
Parameter configurations: (a) α = (2, 2), p = (1, 1); (b) α = (0.5, 0.5), p = (0.3, 0.7) for different values of a
(dashed curves: a = 0.5, solid curves: a = 1, dotted curves: a = 2) .

when the number of components is D = 2. Using the density with respect to the measure λa there is
always a single mode. This is not the case using the density with respect to the measure λ . For three
different values of a, we have considered two different parameterizations: when α = (2, 2), p = (1, 1)
for the (a.1) and (a.2) subfigures and α = (0.5, 0.5), p = (0.3, 0.7) for the (b.1) and (b.2) subfigures.
We can observe that, with respect the Aitchison measure, the a parameter plays the role of a scale
parameter; when it increases the distribution becomes more concentrated around the mean.

When the number of components is D = 3, the usual representation for a composition is the
ternary diagram. Figure 2 shows isodensity contour plots in the ternary diagram of three shifted-
scaled Dirichlet densities using the Aitchison measure λa. Figure 3 shows the corresponding contour
plots in the space of coordinates with respect to an orthonormal basis. The first one, in black,
corresponds to a density with a = 1, p = C(1, 1, 1) and α = (2, 2, 2). Thus, in this case we represent a
Dirichlet distribution with mean and mode in the center of the ternary diagram. The second one, in
red, is obtained with a = 0.3, p = C(1, 1, . . . , 1) and α = (2, 2, 2). It is the result of applying only a
power transformation to the previous Dirichlet random composition. Consequently, in this particular
case, this transformation only changes the measure of dispersion around the mean as can be observed
in the space of coordinates. Finally, in blue, we represent a shifted-scaled Dirichlet with a = 0.3,
p = (0.75, 0.15, 0.12) and α = (2, 2, 2). In this case the density is obtained applying a perturbation to
the second one. In the space of coordinates, we can observe that the resulting density is a translation
of the second one.
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Figure 2: Shifted-scaled Dirichlet density curves when D = 3 with respect to the Aitchison measure λa in the simplex.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0
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Figure 3: Shifted-scaled Dirichlet density curves when D = 3, with respect to the Lebesgue measure λ in real space R
2.

Property 3.14 (Location) The mode and the expected value of X̃ ∼ pSDD(α,p, a) with respect to
the measure λa are, respectively, equal to

modea(X̃) =p⊕ (a⊙modea(X)) ,

Ea(X̃) =p⊕ (a⊙ Ea(X)) ,
(31)

where X ∼ DD(α).

Proof. The proof is straightforward using the properties of perturbation, powering, and vector
space structure of the simplex. 2

There is no closed form for mode(X̃) or E(X̃) of a composition X̃ ∼ pSDD(α,β, a) with respect
to the Lebesgue measure λ in the space of D− 1 parts; in this case, numerical integration is required.

To calculate the metric variance recall that for a random composition X ∈ SD, a perturbation
p ∈ SD, and a scalar a ∈ R,

Mvar(a⊙ (p⊕X)) = a2Mvar(X) . (32)

Property 3.15 (Measures of dispersion) For a random composition X̃ ∼ pSDD(α,p, a) it holds

Mvar(X̃) = a2Mvar(X) , (33)

where X ∼ DD(α) and Mvar(X) is defined by Equation (20).
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From Equation (31) for the mean, and from Equation (33) for the metric variance of a shifted-scaled
Dirichlet distribution, both with respect to the Aitchison measure, we can see that the perturbation
p can be interpreted as a location element, as it simply shifts the distribution, while the parameter a
can be viewed as a scale parameter, as it stretches or shrinks the distribution.

4 Conclusions

The shifted-scaled Dirichlet model is introduced as a natural generalization of the classical Dirichlet
model, i.e, the model obtained after applying perturbation and powering to a Dirichlet random com-
position. Using the density expressed with respect to Aitchison measure, the mode and the expected
value are easily obtained from those of the standard Dirichlet probability density. The Dirichlet and
the scaled Dirichlet models are revised and the corresponding metric variance is provided. The cor-
responding density function with respect to the traditional Lebesgue measure on the simplex is given
and important differences in the principal characteristic measures (mean, mode and variability) are
obtained.
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Appendix

Proof of Equation 11. The Jacobian of the alr transformation is (x1 · · · xD)−1 (Aitchison,
1986, p.115). The matrix relationship between the alr and the ilr vectors is ilr(x) = (FU)−1alr(x)
(Mateu-Figueras, 2003; Egozcue et al., 2003). Consequently, the Jacobian of the ilr transformation is
(|FU|x1 · · · xD)−1.

The product UU′ is the (D,D)-matrix

1

D




D − 1 −1 . . . −1
−1 D − 1 . . . −1
...

...
. . .

...
−1 −1 . . . D − 1


 ,

that has two eigenvalues: 0 with multiplicity 1 and 1 with multiplicityD−1. The eigenspace with eigen-
value 1 is the clr hyperplane, that is, the (D−1)-dimensional linear subspace V = {z ∈ R

D;
∑D

i=1 zi =
0}. As the rows of matrix F belong to V , we obtain that FUU′F′ = FF′. We known that FF′ equals
the (D − 1, D − 1)-matrix H (Aitchison, 1986, p. 343) that has two eigenvalues: 1 with multiplicity
(D − 2) and D with multiplicity 1. Consequently, |FUU′F′| = |FF′| = |H| = D. Also, as FU is a
square matrix, it holds that |FUU′F′| = |FU||(FU)′| = |FU|2 and thus |FU| =

√
D. 2

Proof of Property 3.2. LetX ∼ DD(α). To show that the block of marginals (X1, . . . , Xk, 1−∑k
i=1Xi) has a Dirichlet distribution with parameter (α1, . . . , αk, α+ −∑k

i=1 αi) it is convenient to
integrate out the variable XD−1, starting from the joint probability density function of X ∼ DD(α),
in its domain of integration. We obtain the joint probability density function of (X1, . . . , XD−2, 1 −∑D−2

i=1 Xi)

f(x1, . . . , xD−2, 1−
D−2∑

i=1

xi) =
Γ(α+)∏D
i=1 Γ(αi)

D−2∏

i=1

xαi−1
i

∫ 1−
∑D−2

j=1
xj

0
x
αD−1−1
D−1


1−

D−2∑

j=1

xj



αD−1

dxD−1 .

A change of variable allows to rewrite the last integral in the interval [0, 1], i.e. y =
xD−1

1−
∑D−2

j=1
xj
, to

obtain

f(x1, . . . , xD−2, 1−
D−2∑

i=1

xi) =

=
Γ(α+)∏D
i=1 Γ(αi)

D−2∏

i=1

xαi−1
i


1−

D−2∑

j=1

xj



αD−1+αD−1 ∫ 1

0
yαD−1−1 (1− y)αD−1 dy

=
Γ(α+)∏D−2

i=1 Γ(αi)Γ(αD−1 + αD)

D−2∏

i=1

xαi−1
i


1−

D−2∑

j=1

xj



αD−1+αD−1

,
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which corresponds to the probability density function of a Dirichlet distribution with parameter
(α1, . . . , αD−2, αD−1 + αD). Repeating iteratively the process of integration for the other variables
XD−2, XD−3, . . . , Xk we obtain the stated result.

Now we can prove the third statement: the conditional distribution of any subset of the Xi’s given
any other subset is also (nonstandard) Dirichlet. Let’s consider the conditional probability density

function of
(
X1, . . . , Xk|Xk+1, . . . , XD, 1−

∑D
j=k+1Xj

)
starting from the definition

f


x1, . . . , xk|xk+1, . . . , xD, 1−

D∑

j=k+1

xj


 =

=

Γ(α+)
∏D

i=1
Γ(αi)

xα1−1
1 · · ·xαk−1−1

k−1

(
1−∑D

i=1,i6=k xi

)αk−1∏D
j=k+1 x

αj−1
j

Γ(α+)

Γ(
∑k

r=1
αr)

∏D
j=k+1

Γ(αj)

∏D
j=k+1 x

αj−1
j (1−∑D

j=k+1 xj)
∑k

r=1
αr−1

=

=
Γ(
∑k

r=1 αr)∏k
r=1 Γ(αr)

k−1∏

r=1

(
xr

1−∑D
j=k+1 xj

)αr−1(
1−

∑k−1
r=1 xr

1−∑D
j=k+1 xj

)αk−1
1

(
1−∑D

j=k+1 xj

)D−k−1
.

It is convenient to use the following change of variables

zr =
xr

1−
∑D

j=k+1 xj
so that xr = zr


1−

D∑

j=k+1

xj


 , r = 1, . . . , k − 1 .

The Jacobian can be calculated easily

∣∣∣∣
∂ (z1, . . . , zk−1)

∂ (x1, . . . , xk−1)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

det




1−∑D
j=k+1 xj 0 . . . 0

0 1−∑D
j=k+1 xj . . . 0

...
...

. . .
...

0 0 . . . 1−∑D
j=k+1 xj




∣∣∣∣∣∣∣∣∣∣

=

=


1−

D∑

j=k+1

xj



D−k−1

.

We then obtain the following formula for the joint probability density function of variables Z1, . . . , Zk−1

f(z1, . . . , zk−1) =
Γ(
∑k

r=1 αr)∏k
r=1 Γ(αr)

k−1∏

r=1

zαr−1
r

(
1−

k−1∑

r=1

zr

)αk−1

,

which corresponds to a probability density function of a Dirichlet distribution with parameter vector
(α1, . . . , αk).
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