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Abstract 
Risk assessment and economic evaluation of mining projects are mainly affected by the determination of 
grades and tonnages. In the case of iron ore, multiple variables must be determined for ore characterization 
which estimation must satisfy the original mass balances and stoichiometry among granulometric fractions 
and chemical species.  

Models of these deposits are generally built from estimates obtained using ordinary kriging or cokriging, 
most time using solely the global grades and determining the ones present at different granulometric 
partitions by regression. Alternative approaches include determining the totality of the chemical species and 
distributing the closing error or leaving one variable aside and determining it by difference afterwards, 
adding up the error of previous determinations. Furthermore, the estimates obtained are outside the interval 
of the original variables or even exhibiting negative values. These inconsistencies are generally overridden 
by post-processing the estimates to satisfy the closed sum condition and positiveness.  

In this paper, cokriging of additive log-ratios (alr) is implemented to determine global grades of iron, 
silica, alumina, phosphorous, manganese and loss by ignition and masses of three different granulometric 
partitions, providing better results than the ones obtained through cokriging of the original variables, with all 
the estimates within the original data values interval and satisfying the considered mass balances.  
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1 Introduction 
Iron ore quality is characterized by multiple variables: not only the iron grade but also the contaminants that 
interfere in the subsequent steel manufacturing processes. In addition, granulometric partitions are strictly 
controlled to meet the products´ specifications. Consequently, multiple variables must be determined, 
providing block models of estimates that must satisfy the mass balances among granulometric fractions and 
the stoichiometry in each block. 

The classical methodology of multivariate geostatistics, ordinary cokriging (Marechal, 1970), takes into 
consideration the spatial direct and cross-correlation among variables, leading to models that are more 
consistent with the natural phenomenon under study.  

The inverse correlation of iron and silica present in itabirites can be explained by the genesis of the 
deposit. However, data from iron ore deposits constitute compositional data, with constrained sums provided 
both by the mass balances among granulometric partitions and by the stoichiometry. Consequently, most 
spatial correlations are somehow affected by the constrained sum, being spurious (artificial) (Pearson, 1897; 
Pawlowsky-Glahn and Olea, 2004). 

In 1981, Aitchison introduces the concept that compositional data carry only relative information about 
the values of the components, so that statements on compositions can be expressed in terms of ratios (or log-
ratios, because the logarithmic transformation provides better mathematical properties and ease of 
manipulation) with the advantage of the log-ratio transformation taking the problem from the simplex 
(restricted sample space) to the multivariate, unrestricted real space. 

The previous concepts are extended to regionalized variables (Matheron, 1965) by Pawlosky-Glahn and 
Olea (2004), and alert that the cross-covariances matrix, in the case of compositional data, is a singular 
matrix, such that the application of direct cokriging of the original variables is not possible. Another issue to 
consider is the negative bias condition introduced when considering the direct covariances. With these 
previous concepts, and in the presence of compositional data with a constrained sum, cokriging of original 
data does not provide an unbiased estimate.  

General practice for resolving the closure problem when determining grades from iron ore deposits 
through cokriging of the original variables, consider two alternatives (Goovaerts, 1997): (i) leaving one 
variable outside the cokriging system and determine it afterwards, (ii) determining all the variables involved 
and distributing the error to satisfy the constrained sum. Nevertheless, both alternatives lead to an 
unpredictable amount of obtained estimates that are outside the original data values interval or take negative 
values. These inadequate values must be post-processed, replaced by valid ones, generally obtained by 
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interpolation methods such as kriging, local means or inverse distance, which either do not take into account 
the spatial correlation or the and closure constraint. 

In this paper, cokriging of additive log-ratios (alr) (Pawlowsky-Glahn and Olea, 2004) is implemented to 
determine global grades of iron, silica, alumina, phosphorous, manganese and loss by ignition and masses of 
three different granulometric partitions, from an iron ore deposit located in the Ferrous Quadrilateral, Brazil. 
Comparison with the cokriging estimates obtained from the original data (classical approach) is also 
presented in the discussion of the results. 

 

2 Methodology 
The methodology applied in the present work is ordinary cokriging of additive log-ratios (alr) as it is 
exhaustively presented in Pawlowsky-Glahn and Olea (2004). For further details on multivariate geostatistics 
fundamentals, refer to Wackernagel (1994), Chilès and Delfiner (1999) and Goovaerts (1997), among others. 

 

3 Case study 
The case study comes from a BIF (banded iron formation) iron ore deposit, located in the Ferrous 
Quadrilateral, Brazil (Figure 1). The original UTM coordinates were rotated both for the data set and 
geological model, aligned with the principal direction of the orebody. 

 

 

Figure 1 – Map of the case study area, located in the Ferrous Quadrilateral, Brazil, in the Pico Complex, 
that host the Pico, Galinheiro and Sapecado Mines. 

 
The data set comes from itabirites of various types, of economic importance, with iron grades from 30 to 

64% that constitute a geostatistical domain, arbitrarily called IB.  
The location map of the samples projected in the XY plane (Figure 2),shows a sample spacing of 50m x 

50 m for values of the X coordinate from -7600m to -5500m, and of 200m x 100m along X and Y directions 
respectively, for X coordinate values greater than -5500 meters. 

Evaluation of grain size partition through crushing and screening tests results in three products: Lump 
Ore (fraction1), Sinter Feed (fraction 2) and Pellet Feed (fraction 3). 

Analysis performed at each granulometric partition and at the total sample (global) lead to the 
concentration of the attributes of interest: mass of the granulometric fractions, grades of iron, alumina, silica, 
phosphorous and manganese and loss by ignition, namely Wi, FEi, Ali, SIi, Pi, MNi and PPCi, respectively, 
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where index i corresponds to the granulometric partitions i=1, 2, 3 and for the total grade i = T. In the present 
work, only global grades (i=T) and masses in granulometric partitions (W1, W2 and W3) are considered.  

Table 1 presents the basic statistics of the original data, including declustered mean and variance, 
obtained through moving window method (Isaaks e Srivastava, 1989). 

For determining the masses of each granulometric fraction and global grades, it is considered that the 
closed sum is given by the mass balance and by the stoichiometry, respectively. The masses of the 
granulometric fractions 1, 2 and 3 add up to 100% (Equation 1). 

%100)()()()( 321  uWuWuWuWT  (1)

Stoichiometry among the chemical species of interest is given by Equation 2. 
 

 
Figure 2 - Location map for samples in IB geostatistical domain (plan view at XY), showing iron global 

grade (FET). 
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which is rearranged to leave the iron grade as an independent term (Equation 3). 
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For obtaining the additive log-ratios (alr), the last terms in Equation (1) and Equation (3) are arbitrarily 
chosen to be the divisor in the ratios. Subsequently, spatial continuity of the additive log-ratios is analyzed 
and modeled through the Linear Model of Corregionalization (LMC) (Goovaerts, 1997; Wackernagel, 1994; 
Chilès and Delfiner, 1999), as the alr transformation removes the spurious correlation, but does not 
guarantee the spatial decorrelation of the resulting transformed variables.  

Estimation of the additive log-ratios alr is done through ordinary cokriging at 50 x 20 x 10 m blocks, and 
back-transforming the estimates to the original sample space (the simplex) through the additive generalized 
logistic transformation (agl) (Pawlowsky-Glahn and Olea, 2004).  

 
3.1 Mass of granulometric fractions 
The mass of the granulometric fractions are determined through the additive log-ratios alr, Y1BW(u) and 
Y2BW(u) (Equation 4). 
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Table 1 – Basic statistics of the original data including declustered mean and variance. 

 Num. of 
Samples 

Minimum Maximum Mean Variance 
Declustered 

Mean 
Declustered 

Variance 
ALT 1191 0.11 1.99 1.03 0.218 1.05 0.213 

FET 1191 30.29 63.98 50.51 69.994 49.46 71.366 

MNT 1191 0.01 2.98 0.18 0.166 0.17 0.137 

PT 1191 0.01 0.20 0.05 0.001 0.05 0.001 

PPCT 1180 0.14 7.09 1.93 1.423 2.04 1.502 

SIT 1191 1.44 54.45 24.31 149.516 24.02 154.258 

W1 1191 0.01 94.53 18.24 168.718 17.71 162.414 

W2 1191 4.46 54.16 28.47 61.285 28.08 58.957 

W3 1191 1.00 94.48 53.29 213.411 54.21 199.768 
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The spatial continuity analysis of these transformed variables leads to an anisotropic ellipsoid with its 
principal and intermediate axes along N68º and N158º in the XY plane, and the minor one perpendicular to 
this plane, D-90º. The anisotropy of the transformed variables is rotated 32 degrees counter-clockwise from 
the anisotropic ellipsoid obtained for the original variables.  

The Linear Model of Corregionalization (LMC) is presented in  
Figure 3 showing the experimental and modeled direct and cross variograms, the LMC equation BWγ  that 

includes a nugget effect and two spherical structures Sph (Armstrong, 1989; Chilès and Delfiner, 1999), with 
the corresponding ranges along the three principal anisotropic directions. 

Ordinary cokriging is performed in the transformed variables using the neighborhood and search 
strategies parameters presented in Table 2, which were determined helped by using cross validation (Isaaks 
and Srivastava, 1989). 

Estimates Y*1BW(u) e Y*2BW(u) are back transformed to the original sample space using the inverse 
transformation agl (Pawlowsky-Glahn and Olea, 2004) obtaining the estimated values for W1(u), W2(u) and 
W(3), W1Y(u), W2Y(u) e W3Y(u), respectively.  

 
Table 2 - Neighborhood and search strategies parameters for ordinary cokriging of the alr Y1BW(u) e 

Y2BW(u), obtained from the mass balance among granulometric partitions. 

Type of neighborhood: Moving 
Search ellipsoid: N68º, N158º, D-90º 

Search distance along N68º: 750m 

Search distance along N158º: 220m 

Search distance along D-90º: 60m 

Number of angular sectors: 8 

Minimum number of samples in neighborhood: 3 

Optimum number of samples in each angular sector: 2 

Heterotopic search: Yes 

Block discretization in X: 5 

Block discretization in Y: 5 

Block discretization in Z: 1 

 
 

  

Proceedings of the 4th International Workshop 
on Compositional Data Analysis (2011)

Egozcue, J.J., Tolosana-Delgado, R. and Ortego, M.I. (eds.) 
ISBN: 978-84-87867-76-7

4



 
 
























 90

45

158

130

68

140

90

20

158

50

68

70
210

D

m

N

m

N

m
Sph

D

m

N

m

N

m
SphBW CCCγ

 
 

Corregionalization matrix C0 
Y1BW Y2BW

Y1BW 0.14 0.03
Y2BW 0.03 0.01

Corregionalization matrix C1 
Y1BW Y2BW

Y1BW 0.13 0.04
Y2BW 0.04 0.01

Corregionalization matrix C2 
Y1BW Y2BW

Y1BW 0.91 0.32
Y2BW 0.32 0.25

 
Figure 3 – Linear Model of Corregionalization (LMC) BWγ , with a nugget effect and two spherical 

structures (Sph) to model experimental direct and cross variograms of the additive log-ratios alr Y1BW(u) 
and Y2BW(u), obtained from the mass balance among granulometric partitions, with the corresponding 
corregionalization matrices C0, C1 and C2.  
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3.2 Global grades 
For determining the global grades, the constant sum that is considered comes from the stoichiometry relation 
in Equation 3, with i=T to consider the global grades.  
The additive log-ratios alr are determined using the global iron grade as the divisor (Equation 5).  
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Analyzing the spatial continuity of the transformed variables, it was mapped the anisotropic ellipsoid with 
its principal and intermediate axes along directions N100º and N190º at the XY plane, respectively, and the 
minor axe is perpendicular to this plane at D-90º, being these the anisotropic directions of original data.  

In this case, modeling of the LMC ( EQTγ ) has the difficulty of simultaneously fitting five direct 

variograms and the corresponding ten cross variograms satisfying the positive definiteness conditions of the 
corregionalization matrices. Figure 4 shows the model equation and corresponding corregionalization 
matrices. 

Ordinary cokriging is then performed using the same neighborhood and search strategies parameters in 
Table 2, but with the search ellipsoid rotated to the new anisotropic directions (N100º, N190º and D-90º), and 
the estimates are back-transformed to the original sample space, using the agl inverse transformation. 
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Corregionalization matrix C0 

Y1EQT Y2EQT Y3EQT Y4EQT Y5EQT 
Y1EQT 0.13 0.09 0.06 0.10 0.00 
Y2EQT 0.09 0.39 -0.02 0.07 0.01 
Y3EQT 0.06 -0.02 0.13 0.07 0.06 
Y4EQT 0.10 0.07 0.07 0.10 -0.01 
Y5EQT 0.00 0.01 0.06 -0.01 0.25 

Corregionalization matrix C1 
Y1EQT Y2EQT Y3EQT Y4EQT Y5EQT 

Y1EQT 0.01 -0.03 -0.01 -0.01 0.00 
Y2EQT -0.03 0.14 0.05 0.01 -0.03 
Y3EQT -0.01 0.05 0.02 0.00 -0.02 
Y4EQT -0.01 0.01 0.00 0.01 0.01 
Y5EQT 0.00 -0.03 -0.02 0.01 0.02 

Corregionalization matrix C2 
Y1EQT Y2EQT Y3EQT Y4EQT Y5EQT 

Y1EQT 0.22 0.13 0.05 0.15 0.03 
Y2EQT 0.13 1.29 0.11 0.14 0.06 
Y3EQT 0.05 0.11 0.14 0.10 0.02 
Y4EQT 0.15 0.14 0.10 0.44 0.01 
Y5EQT 0.03 0.06 0.02 0.01 0.32 

Figure 4 – Linear Model of Corregionalization (LMC) EQTγ , with a nugget effect and two spherical 

structures (Sph) to model experimental direct and cross variograms of the additive log-ratios alr Y1EQT(u), 
Y2EQT(u), Y3EQT(u), Y4EQT(u) and Y5EQT(u), obtained from the stoichiometry relation among global 
grades, with the corresponding corregionalization matrices C0, C1 and C2.  
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4 Discussion of results 
In the discussion of results, the unbiasedness of the estimates is analyzed observing the reproduction of the 
global and local mean. The global mean reproduction is verified comparing the declustered mean of the 
original data with the mean of the estimates. For the reproduction of the local mean, the conditional 
expectation of the estimates and original data are plotted together along principal directions X, Y and Z. In 
this paper, only X direction is shown. 

Another aspect to be analyzed is the presence of negative values and the satisfaction of the constant sums.  
Comparison with estimates obtained performing ordinary cokriging of the original variables is also 

presented. In this case, the number of variables to have their spatial correlation jointly modeled through the 
LMC increases in one unit compared to the ones modeled by ordinary cokriging of the additive log-ratios 
alr. 

Basic statistics of the estimates obtained in this case study are relatively similar (Table 3). The global 
mean of the estimates is similar to the declustered mean of the original data (Table 1), showing unbiasedness 
of the estimators. 

However, it can be observed that the minimum value for manganese global grade (MNT), obtained 
through cokriging of the original variables, is negative. Further analysis leads to a total of 500 blocks that 
have negative values for this attribute.  

In the case of the local mean, Figure 5 shows the conditional expectation along X coordinate for the 
original data and estimates obtained both through cokriging of the original variables and cokriging of the 
additive log-ratios alr. Fluctuations of the local means of the estimates follow the ones of the original data. 

 
Table 3 – Basic statistics of the estimates obtained by ordinary cokriging of the original data (CK) and by 

ordinary cokriging of the additive log-ratios alr (CKalr). 

 CK CKalr 
Minimum Maximum  Mean Variance Minimum Maximum  Mean Variance 

ALT 0.35 1.71 1.12 0.05 0.25 1.9 1.07 0.083 
FET 33.89 62.16 50.43 18.63 33.5 62.99 51.64 24.484 
MNT -0.03 1.64 0.19 0.05 0.01 2.16 0.11 0.024 
PPCT 0.24 4.63 2.31 0.94 0.24 5.53 2.22 1.16 

PT 0.02 0.11 0.05 0.01 0.01 0.11 0.05 0.0003 
SIT 7.72 48.38 23.87 38.52 4.67 49.2 22.69 62.695 
W1 2.88 48.26 17.98 28.02 1.19 58.19 16.02 39.356 
W2 14.24 42.13 28.32 12.57 9.09 51.39 29.16 23.185 
W3 24.61 79.24 53.70 38.44 19.19 89.18 54.82 66.01 

 
The constant sums are perfectly satisfied for the totality of the estimates in the case of cokriging of the 

additive log-ratios alr (Figure 6), with estimates that are in the original sample space where the constant sum 
is maintained (the simplex). The constant sums obtained through the estimates obtained by ordinary 
cokriging of the original data ordinary are adequate, but can vary in the case of another data set, because 
ordinary cokriging does not guarantee that the constant sum is satisfied.  
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Figure 5 - Conditional expectation diagrams of original data (Data), estimates obtained by cokriging of original data (CK) and by cokriging of additive log-ratios (CKalr) 

along X direction considering bands of 150m, for total grades of (a) alumina, (b) iron, (c) manganese, (d) phosphorous, (e) loss by ignition, (f) silica (ALT, FET, MNT, PT, 
PPCT and SIT) and mass of granulometric partitions (g) 1, (h) 2 and (i) 3 (W1, W2 and W3).  
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(a) (b) 

  
(c) (d) 

Figure 6 - Histograms of the constant sum given by the stoichiometry of global grades (stoichT) and by 
the mass balances BW obtained by cokriging of the additive log-ratios alr (CKalr) (a) and (c) and (b) and (d) 
cokriging of the original data (CK), respectively. 

 

5 Conclusions 
In the mining industry, data coming from iron ore deposits and other ones such as bauxite and phosphate 
constitute regionalized compositions as the regionalized variables satisfy mass balances. When various 
species are involved in the final product quality, as in the case of iron ore, stoichiometry also leads to 
regionalized compositions. Moreover, most times the same specie simultaneously satisfies mass balances and 
stoichiometry, although this is not the situation presented in this paper.  

Common practice for quantifying grades and tonnages does not consider that the variables involved 
constitute a regionalized composition. There are various palliative actions used to ensure the constant sums 
and to eliminate the negative values: (i) all the variables involved are considered to be in intrinsic correlation 
with the same scale of spatial correlation, which is not necessarily true; (ii) negative values are substituted by 
arbitrary values, obtained through interpolators with an arbitrary variogram model such as local means or 
inverse to the distance. This post-processing of the estimates varies from data set to data set, and it is not 
possible to predict the amount of negative values or the dispersion of the closed sum value. 

The sample space of the attributes of this kind of deposits is the D-simplex (D is the number of attributes 
being considered), where the sum is constrained to a constant value. The transformation into additive log-
ratios alr, leads to a new sample space being the real space of dimension (D-1), where it is possible to use the 
classic methodologies of multivariate geostatistics. When back-transforming the estimates to the original 
sample space through the agl transformation, the estimates are again in their sample space, the D-simplex. 
For this reason, cokriging of the additive log-ratios alr guarantees the satisfaction of the balances considered: 
because the obtained estimates are restricted to the simplex. 

The results obtained through cokriging of the additive log-ratios alr are highly satisfactory, reproducing 
the global and local mean, with positive estimates within the original data values interval, satisfying the 
constant sum condition for the totality of the estimates. In addition, the Linear Model of Corregionalization 
(LMC) to be modeled is one unit smaller than the one obtained from the original variables, and consequently, 
easier to model.  

In the case of ores that present closed sums, as iron ore, is highly recommended to obtain the estimates 
that constitute the block models through cokriging of the additive log-ratios alr instead of cokriging of the 
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original variables, or by any other methodology that takes into account that the data set sample space is not 
the real space but the simplex.  
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