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Summary. We investigate effectiveness of an acceleration method applied to the modified
Picard iteration for simulations of variably saturated flow. We solve nonlinear systems
using both unaccelerated and accelerated modified Picard iteration as well as Newton’s
method. Since Picard iterations can be slow to converge, the advantage of acceleration is
to provide faster convergence while maintaining advantages of the Picard method over the
Newton method. Results indicate that the accelerated method provides a robust solver with
significant potential computational advantages.

1 INTRODUCTION

We consider the mixed form of Richards’ equation (RE) [10],

∂θ(h)

∂t
−∇ · (Kkr(h)∇(h + z)) = q, (1)

where h is pressure head; θ(h) = s(h)φ is the water content, with water saturation s(h) and
porosity of the medium φ; K is the saturated hydraulic conductivity; kr(h) is the relative
permeability of water to air; t is time; z is the vertical direction; and q is a source/sink
term. Common numerical discretizations of (1) employ finite-element or finite-difference
methods along with backward-Euler implicit time integration. With these schemes, an
algebraic system of highly nonlinear equations must be solved within each time step.

Authors have approached solving this nonlinear system using a Newton method [7], a
Picard (or fixed-point) iteration [6], or some combination. Although Newton’s method
can exhibit quadratic convergence, it suffers some drawbacks. First, even though the
nonlinear problem formed from common discretizations of RE is symmetric, the linear
Jacobian systems in Newton’s method are nonsymmetric and are more problematic to
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solve than symmetric systems. Also, computing the Jacobians or their approximations can
be computationally expensive. Furthermore, the provably fast convergence of Newton’s
method requires certain continuity properties of the Jacobian. Some parameterizations of
the van Genuchten curves for relative permeability [11] do not result in such continuity. In
contrast, the Picard method involves a symmetric linear system (provided the discretized
nonlinear system is symmetric) and has lower continuity requirements than Newton’s
method. The main drawback of Picard iteration has been its linear convergence rate.

A number of authors have looked at the use of these and related methods for RE
[4, 9, 8]. In general, authors have found that no method is definitively better than others,
although more recent work has focussed on use of either a modified Picard method or
Newton’s method for large-scale simulations. The modified Picard algorithm [4] linearizes
the saturation with a first-order Taylor expansion, such as one would do in a Newton
method, but then applies a standard fixed-point approach to the relative permeability.

Recently, an acceleration method originating in work of Anderson [1] has been shown
to be potentially useful in a variety of applications [12]. Applied to the modified Picard
iteration, this scheme shows promise to retain many of the advantages of the Picard scheme
over Newton’s method, such as symmetric linear systems and no relative permeability
derivative requirements, while speeding up convergence of the iterates. In this paper, we
present initial results showing robustness of the accelerated modified Picard method on
steady-state and RE test cases. In addition, we explore the convergence properties of
the scheme as compared with modified Picard and Newton methods. The next section
outlines the Newton and modified Picard schemes as well as the Anderson acceleration
method. Section 3 presents numerical results comparing the methods. In the last section,
we make some concluding remarks.

2 NONLINEAR SOLVER METHODS

With our focus on convergence properties of nonlinear solvers, we limit discussion to
1D problems, uniform grids in space and time, second-order finite-difference schemes for
spatial discretization, and backward-Euler time discretization. We expect findings on
convergence to readily carry over to more general discretizations and grids.

Applying these discretizations to (1), for each grid point i we have the following dis-
cretized equation in terms of the vector of pressure-head values, hn = [hn

i ], i = 1, ..., N ,
(N is the number of grid points) at time tn:

Fi(h
n) ≡ ∆z[θ(hn

i )− θ(hn−1
i )]−∆t(ui+1/2 − ui−1/2)−∆t∆zqi = 0,

ui+1/2 = (K(z)kr(h
n))

∣∣∣i+1/2

[
hn

i+1 − hn
i

∆z
+ 1

]
. (2)

We write this equation in vector form as,

F(hn) ≡ (θ(hn)− θ(hn−1))∆z + (A(hn)hn)∆t− q∆z = 0, (3)
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where A(hn) is the matrix arising from application of the finite difference spatial dis-
cretization, q is the vector formed from [qi∆t], and hn−1 is the pressure head at time tn−1.
We now derive the three iteration approaches. For each method, we consider advancing
an approximation of hn at time step tn from iteration k to k +1; we thus replace the time
superscript with an iteration superscript unless necessary to indicate a time other than
tn. We terminate the algorithms when ‖F(hk)‖ < tol, where tol is a specified tolerance.

At the kth iteration, Newton’s method proceeds by finding a root of the linear model

F(hk+1) ≈ F(hk) + JF (hk)(hk+1 − hk), (4)

where JF (hk) is the Jacobian of F evaluated at hk. The algorithm is:

Algorithm NI: Newton Iteration

Given h0.
For k = 0, 1, . . . , until ‖F(hk)‖ < tol

Compute JF (hk).
Solve the system JF (hk)∆hk = −F(hk).
Set hk+1 = hk + ∆hk.

Note that each iteration requires solution of a nonsymmetric linear system.
To define the modified Picard method, we employ the approximations

A(hk+1)hk+1 ≈ A(hk)hk+1, θ(hk+1) ≈ θ(hk) + Jθ(h
k)∆hk. (5)

Combining these with the relation hk+1 = hk + ∆hk and placing them into (3) results in

F̃(hk+1) ≡
(
θ(hk) + Jθ(h

k)hk+1 − Jθ(h
k)hk − θ(hn−1)

)
∆z + (A(hk)hk+1)∆t− q∆z. (6)

Setting F̃ = 0, adding (A(hk)hk − A(hk)hk)∆t, and solving for ∆hk gives

hk+1 = G(hk) ≡ hk +
(
Jθ(h

k) + A(hk)
∆t

∆z

)−1 (
q− A(hk)hk ∆t

∆z
− θ(hk) + θ(hn−1)

)
. (7)

Building this into an iterative method gives the modified Picard iteration. We note that
the linear system is symmetric; however, the system includes a derivative of the saturation
– pressure head relationship.

Algorithm MPI: Modified Picard Iteration

Given h0.
For k = 0, 1, . . . , until ‖F(hk)‖ < tol

Set hk+1 = G(hk).

While the modified Picard method has proven useful in many situations, it can be
slower to converge than Newton. Acceleration methods can potentially alleviate slow
convergence and, in some cases, divergence as well. Here, we consider an acceleration
method originating in work of Anderson [1], which we formulate as follows:
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Algorithm AA: Anderson Acceleration

Given h0 and m ≥ 1.
Set h1 = G(h0).
For k = 1, 2, . . . , until ‖F(hk)‖ < tol

Set mk = min {m, k}.
Set Fk = (fk−mk

, . . . , fk), where fi = G(hi)− hi.

Compute α(k) = (α
(k)
0 , . . . , α(k)

mk
)T that solves minα ‖Fkα‖2 s. t.

∑mk
i=0 αi = 1.

Set hk+1 =
∑mk

i=0 α
(k)
i G(hk−mk+i).

The rationale for this algorithm is that, if G were linear, then hk+1 = G(hmin), where
hmin ≡ ∑mk

i=0 αih
k−mk+i has minimal fixed-point residual among all convex combinations

of hk−mk
, . . . , hk. The expense of the algorithm increases as iterations proceed, up to

about 2m vectors of storage and (if properly implemented, see [12]) O(Nm) arithmetic
operations per iteration beyond those required for MPI.

Acceleration of Picard iterations for variably-saturated flow equations has also been
considered in [5]. The basic accelerated method, termed the Picard–Broyden method in
[5], is obtained by applying Broyden’s method (specifically, the first Broyden method [3])
to the Picard system h−G(h) = 0. In numerical experiments in [5], the Picard–Broyden
method showed faster convergence than Picard iteration. Algorithm AA has a certain
relationship to the second Broyden update [3]; however, it is not a straightforward appli-
cation of the second Broyden method to the Picard system (see [12]).

As a last note on the methods, we point out that a rule of thumb has been that each
Newton iteration takes about twice the run time of each Picard iteration due to the
symmetry in the linear system giving rise to lower memory requirements and faster linear
solves. In addition, the cost of computing derivatives of the relative permeabilities adds
to the expense of Newton relative to Picard. The Anderson-accelerated Picard method
considered here will cost more per iteration than Picard, depending on m, but we expect
that each iteration will still be considerably faster than an iteration of Newton’s method.

3 NUMERICAL TESTS

In our numerical tests, we examine solver performance on problems incorporating the
van Genuchten parameterization for relative permeability, given as

kr(h) =





1, h ≥ 0,

(1 + (α|h|)n)−
m
2

(
1− (α|h|)n−1

[1+(α|h|)n]m

)2
, h < 0,

where m = 1 − 1/n. These problems generally become more difficult as n becomes
smaller and α becomes larger. In particular, when n < 2, the derivative of kr is no longer
Lipschitz continuous at h = 0, and thus the function no longer satisfies conditions needed
for provably fast convergence of Newton solvers.

We consider two test problems. The first is a steady-state problem designed specifically
to examine performance of solvers on the nonlinearities particular to the van Genuchten
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Figure 1: Solution (left), relative permeability (middle), and derivative of relative permeability (right)
for slightly loamy sand as a function of space.

parameterization of relative permeability. The second is a RE test case from [4] in which
the relative permeabilities and their derivatives are smooth.

3.1 Case 1: Steady-state elliptic problem

This is a test case from [13], posed on the domain x ∈ (0, 1) and given as,

−(kr(u)u′)′ = 0, u(0) = −2, u(1) = 1, (8)

where u is the unknown, and kr is given in (3).
We discretize (1) using (2) with arithmetic averages of kr(ui) and kr(ui+1) at the half

points, i + 1/2. We consider the cases given in Table 1. The “New Mexico” values are

Soil Class α n
New Mexico 0.0335 2

Slightly loamy sand 0.0599 1.51
Loam 0.206 1.09

Perturbation 0.207 1.1

Table 1: Parameter values for tests in Case 1.

from [4], and values for the “Slightly loamy sand” and “Loam” are from Table 4 in [2].
“Perturbation” values are included to test solver robustness. We use 256 grid points and
take an initial solution estimate to be linear from −2 at x = 0 to 1 at x = 1.

Figure 1 shows the solution u, kr, and the derivative of kr over the spatial domain for
the slightly loamy sand. We see that where the solution crosses 0 (near x = 0.55) the value
of kr rapidly approaches 1 and its derivative steeply increases. Note that as n → 1, the
relative permeability approximates a step function, and the derivative becomes infinite at
the point u = 0. Note the sharp rise in the derivative seen in Figure 1.

Figure 2 shows convergence plots for the cases of Table 1. For the New Mexico data,
all solvers converge quickly. The relative permeability and its derivative are smooth, and
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Figure 2: Nonlinear residual versus iteration number for the cases in Table 1: New Mexico (upper left),
slightly loamy sand (upper right), loam (lower left), and the slight perturbation (lower right).

the MPI and AA methods (with values of m shown in parentheses) take about twice the
iterations of NI. For the slightly loamy sand, although the derivative of kr is not smooth,
we see convergence of all methods with NI as the fastest. NI shows trouble initially with
residual increases after the first couple of iterations. NI quickly recovers and is able to
solve efficiently afterwards. AA gives reasonable convergence (about twice the iterations
of NI) once m > 1. For the loam soil, the derivative of relative permeability is sharper.
We see clear failure of the MPI method, with recovery of robustness with the AA scheme.
NI still converges fastest, and now even the accelerated methods take more than twice
the number of iterations of NI. The last case is a small perturbation of the loam soil.
We see failure of both NI and MPI with convergence of the AA methods. We note the
convergence numbers for the AA methods are very similar to those for the loam soil.

3.2 Case 2: Richards’ Equation

This case is based on parameters in [4]. Here K = 0.00922 cm/s, h(z, 0) = −1000 cm,
h(0, t) = −1000 cm, and h(60 cm, t) = −75 cm. We take ∆t = 60 min, ∆z = 2.5 cm,
and run for one day. The water content is given by θ(h) = (θs − θr) (1 + (α|h|)n)−m + θr.
Data is “New Mexico” from Table 1, with θs = 0.368 and θr = 0.102.

Table 2 shows the total number of iterations cumulative for the RE test case for each
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solver. NI again requires the fewest iterations for convergence. As the tolerance decreases,
requiring a smaller final nonlinear residual, we clearly see the difference between the
quadratic convergence of NI and the linear convergence of MPI. Once the solution estimate
is close to the true solution of the nonlinear problem, NI will reduce the error rapidly and
give very significant improvements in the solution at each iteration. In contrast, MPI will
not make as much progress with each iteration. This situation was seen in Figure 2 as
well. Table 2 also shows a significant benefit in using algorithm AA over MPI alone. In
fact, the number of iterations required for many of the AA variants is less than twice the
number for NI, suggesting that further computational testing should be done to determine
the viability of AA methods as an alternative to NI once the full computational cost is
measured. The advantage of applying AA to MPI over NI decreases with decreasing
tolerances since NI requires very few additional iterations to meet the tighter convergence
requirements.

Solver 10−6 10−8 10−10

NI 173 180 189
MPI 412 589 766
AA(1) 316 398 498
AA(2) 345 425 501
AA(3) 292 368 454
AA(4) 280 354 427
AA(5) 285 352 422

Table 2: Cumulative iteration counts for the RE test. Tolerances are shown at the top of each column.

4 CONCLUSIONS

Our results show that Anderson acceleration for the modified Picard method provides
a robust nonlinear solver for the types of nonlinearities common in RE. The number of
iterations required for solving with Anderson acceleration is roughly twice that of using
Newton’s method. Anderson-accelerated modified Picard does not require derivatives of
the relative permeability and only requires solving symmetric systems. We thus expect
each iteration of Anderson-accelerated modified Picard to be considerably faster than an
iteration of Newton’s method. Future work will include assessing the time for solution
and for each iteration of these methods. We will also examine the relative performance of
the Anderson-accelerated modified Picard method and the Picard-Broyden method of [5].
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