
XVIII International Conference on Water Resources
CMWR 2010

J. Carrera (Ed)
c©CIMNE, Barcelona, 2010

REPRESENTATION OF DAM-BREACH GEOMETRY ON A
REGULAR 2-D MESH USING QUADTREE LOCAL MESH

REFINEMENT

M.S. Altinakar∗, M.Z. McGrath∗ and E. Miglio⋄

∗National Center for Computational Hydroscience and Engineering,University of Mississippi,
Oxford, MS, USA

e-mail: {altinakar,mzmcgrat}@ncche.olemiss.edu, web page: http://www.ncche.olemiss.edu/

⋄MOX, Dept. of Mathematics, Politecnico di Milano
Milano, Italy

e-mail: edie.miglio@polimi.it, web page: http://mox.polimi.it

Key words: Dam-break; Flood; Quadtree; Mesh Refinement; Breach hydrograph.

Summary. A 2D first order upwinding finite-volume scheme is used on a regular or-
thogonal mesh in a numerical model to simulate dam break and dam breach flow from
a reservoir. The discharge through the changing breach geometry is crucial to the accu-
racy of the resulting flood wave, yet the method of representing the breach by changing
the bottom elevation of individual cells within the vicinity of the dam makes the breach
hydrograph and peak discharge highly dependent on the mesh size and dam orienta-
tion. To increase accuracy and reduce computational burden associated with refining
the entire mesh, a quadtree local mesh refinement technique was used to better model
the dam breach geometry. Simulation results from the model using a combined regular
and quadtree mesh showed that a coarse mesh with local refinement can yield a good
approximation of the discharge hydrograph obtained using a globally-refined mesh, with
significant savings in computational time.

1 INTRODUCTION

Two-dimensional numerical models are very useful in solving shallow water equations
for a problem of interest, such as a dam break releasing water into a floodplain. Numerical
models solve governing equations for the variables of interest after discretizing the problem
domain. In the case of a finite volume model for dam break, the variables of interest are
flow depth and flow velocities, and the domain is discretized into cells. Each cell in
the domain corresponds to a real-world area where the flow variables can be used for
consequence analysis and emergency management planning operations stemming from
damage caused by the flowing water. These analyses necessitate accurate results from
the numerical model. One of the easiest ways to discretize a domain is to divide it into

1



M.S. Altinakar, M.Z. McGrath and E. Miglio

equal-sized square cells, resulting in a regular orthogonal mesh. Using a mesh of this type
requires little preparation but has some drawbacks which will be discussed. In the case
of dam break flood modeling, the problem usually involves some reservoir or source of
water, the dam, and terrain downstream of the dam over which the water will flow. It
is possible to separately compute the flow of water from the reservoir through the dam
breach and apply the resulting hydrograph as a boundary condition to the 2D model.
Another possibility, and the one used in the current model, is to model the reservoir, dam
breach progression, and the downstream inundation directly at the same time. In this
case the elevation of terrain is given for each cell in the domain and some value of water
depth is assigned to the cells occupying the area of the reservoir. The cells occupying the
area of the dam itself are given a bottom elevation equal to the crest elevation of the dam.
This approach results in some problems because each cell can have only a single value for
each variable, including bottom elevation. Typical cell sizes for calculation range from
about 10m to 100m square, which means that features smaller than this size may not
be represented accurately. Even if sufficient data is available to refine the entire mesh,
halving the cell size doubles the number of cells in both x- and y- directions and halves
the time step in an explicit scheme. This yields a four-fold increase in the total number of
cells and doubles the number of time steps to calculate, resulting in an eight-fold increase
in computational burden. The flow of water through the breach of a dam is of paramount
importance to the resulting downstream flood. However it can also be difficult to model
with a mesh that is coarser than the geometry of the breach itself, especially when the
dam is not aligned with the axes of the mesh. Ideally, accurate discharge through the
breach in a dam should be obtained despite the ability of the mesh to resolve small breach
geometry features. Since refinement of the entire mesh imposes significant increases in
computational burden, and because the dam breach progression requires small features to
be modeled accurately, the ability to locally refine the mesh in the vicinity of the dam is a
worthwhile endeavor. This was accomplished using a version of quadtree mesh refinement.

In the current model, the quadtree structure is applied to cells in the two-dimensional
mesh. Once the entire problem domain is discretized into cells with the original size, the
ones near the areas of interest (dams) are refined until the smallest child cells are of the
desired size.

The quadtree structure has been implemented in a pre-existing verified and validated
two-dimensional numerical code called CCHE2D-FLOOD ([1]-[2]). This uses an explicit,
conservative, finite-volume, first-order upwinding scheme on a regular square mesh. A
test case involving a dam breach was modeled with mesh sizes of 5m, 10m, 20m, and
40m. For the three largest mesh sizes, the breach was modeled first with no refinement
and then with local refinement to a level of 5m near the dam. No refinement was made
to the 5m mesh. Section 4 of this paper describes the results of these tests.

2



M.S. Altinakar, M.Z. McGrath and E. Miglio

2 DESCRIPTION OF THE EXISTING 2D NUMERICAL CODE

The conservative form of the two-dimensional shallow water equations is written as

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= S, (1)

where U = [u, hu, hv]T , F(U) = [hu, huu, huv]T , G(U) = [hv, huv, hvv]T and S =

[0, −gh∂Z
∂x

− g u
√

u2+v2

C2 , −gh∂Z
∂y

− g v
√

u2+v2

C2 ]T represent the vector of conserved variables,
the vector of fluxes in the x-direction, the vector of fluxes in the y-direction and the
vector of sources; moreover h is the water depth, u and v are the velocities, g is the
gravity acceleration, Z is the water surface elevation and C is the Chezy coefficient.

The discretization reads as follows

Un+1
ij = Un

ij −
∆t

∆xi

(Fi+1/2,j − Fi−1/2,j) −
∆t

∆yi

(Gi,j+1/2 − Gi,j−1/2) + ∆tSij (2)

where Fi+1/2,j, Fi−1/2,j, Gi,j+1/2 and Gi,j−1/2 are the fluxes on the cell faces; a simple
upwind method is adopted to compute the intercell fluxes. A more detailed description
of the algorithm can be found in [3].

2.1 Procedure

The existing model is quite flexible in that it reads bottom elevation values from a
DEM prepared by common GIS software and implements dams and reservoirs through
simple text input files that are easily edited to set up a simulation. The cells within
a user-given area representing the dam are identified and set to the proper dam crest
elevation, and the reservoirs are filled with water to the proper level. The user can define
points at which to sample data at regular intervals, and can also define lines across which
flow discharge is measured.

A dam is defined by two points, a crest elevation, a width, and a breach geometry
profile. The dam width is applied to the line from the first point to the second point, which
forms a rectangular area. All cells whose centers lie inside this rectangle are initially given
a bottom elevation equal to the dam crest elevation. The cells inside this rectangular area
have their bottom elevations updated at each time step according to a breach geometry
profile. A profile is a series of elevation changes along the length of the dam that define
a ”snapshot” of the geometry of the breach at a certain point in time. The geometry is
interpolated both in space (using a single projected cell-center point between the user-
given profile points) and in time (between different profile snapshots) for each cell under
the dam.

3 IMPLEMENTATION OF THE QUADTREE METHOD

The data structures for the quadtree mesh were implemented similarly to the method
proposed by [4]. Each cell in the quadtree data structure has an associated level of

3



M.S. Altinakar, M.Z. McGrath and E. Miglio

refinement. Cells in level 1 are the same size as the cells in the regular 2D mesh, while
cells in each level greater than 1 have dimensions exactly half as long as the cells in the
previous level. A cell in the quadtree data structure has four nodes at its corners and
four edges which can be shared by neighboring cells. Corner nodes are only used to keep
position information and are not used in the computation. The four edges of a cell are
of the same level of refinement as the cell itself. The procedure for refining a cell is as
follows. A new node common to the four child cells at the center of the parent cell is
added to the nodes list. Four new child cells are added to the cell list with one level
higher than the parent cell. Four new interior edges with the same level as the child cells
are added to the edge list. Each of these edges is shared by two of the new child cells.
Then each of the four existing edges of the parent cell is checked to see if it already has
child edges. If so, then the new child cells identify with the proper edge, and if not, the
edge is also refined by one level. This is done to ensure that there is no duplication of
edges, nodes, or cells, and that connectivity between parent and child exists at all times
for both cells and edges. Once this is done, all four adjacent cells are checked to make
sure that the difference in level of refinement does not exceed one, as the quadtree data
structure requires that a cell have no more than two cells adjacent to it on a given side.
The procedure of cell refinement is recursive, allowing this rule to be verified in neighbors
of each refined cell in succession. The quadtree method was implemented by constructing
separate linked lists, one for cells of each level, one for edges, and one for nodes. A cell
is treated as a record in the cell list with several fields including flow variables, position
information, parent-child connectivity, and the connections with the four corresponding
edges. Connectivity between parent and child cells, between parent and child edges, and
between cells and edges is maintained with pointers. Cells of different levels are kept in
separate lists to increase speed of computation. A cell with no child cells is called a leaf
cell, while a cell with child cells is called a stem cell.

3.1 Computation

The same numerical scheme from the original 2D model is applied to the quadtree
model with some differences. Calculations are done to update the edge fluxes and cells
with the highest level of refinement, and then progressively toward the edges and cells
with lower levels of refinement. For leaf edges, the fluxes are calculated as usual; for stem
edges, the fluxes are calculated by summing the two child edge flux values. Once all edge
fluxes have been calculated for the current level, flow variables at the cell centers are
updated. If a cell is a leaf cell, it is updated according to equation (2). If a cell is a stem
cell, then its flow variables h, Z, u, and v are taken from the average of the child cells
which are not dry. For instance, a cell with one dry child cell would take the average of
the flow values from the remaining three. This prevents higher bottom elevations in dry
cells from causing problems. Since a cell at a higher level of refinement is exactly half as
large as its parent cell, the time step for each level is also half the value of the parent cell
in order to maintain the same CFL value.

4



M.S. Altinakar, M.Z. McGrath and E. Miglio

The calculation procedure is a nested loop where the smallest cells are calculated in
the inner-most loop. To calculate any level, all the levels below it must first be calculated
with its own time step. Essentially each level is calculated and updated twice before
moving to the next level. The water surface slope source term is applied by judging the
upwind direction of the flow of water, which comes from looking at the flow direction in
the cell’s neighbors. In the case of the regular 2D mesh, a cell has only one neighbor on
each side, and this term is easily calculated. However, with the quadtree mesh, a cell
can have two neighbors on a side, so the water surface elevation used for the slope is the
average of those two neighbor cells.

At the beginning of the calculation of the quadtree mesh, the flow variables of the
level-1 leaf cells are copied from the regular 2D mesh. These cells exist in the quadtree
mesh precisely for connectivity purposes, and their flow values are calculated only in the
regular 2D mesh calculation. After the quadtree calculations have finished, the newly-
computed flux values on the edges of these level-1 connection cells are copied back into
the regular 2D mesh arrays. This way, the cell-center flow values in both regular and
quadtree meshes are calculated using the current time step’s fluxes and the fluxes for the
next time step are calculated using the current time step’s cell-center flow values.

Initially it was assumed that the refinement process only needed to obey the rule
requiring adjacent cells to differ by no more than one level. However, if a cell was adjacent
to a mesh size change on both top and bottom, or on both left and right sides, it led to
instabilities stemming from the calculation of the water surface slope source term. The
problem was diminished by also requiring that the difference between the maximum level
and minimum level of refinement in all neighbors of a cell be less than or equal to one.

3.2 Application to dam cells

The quadtree mesh refinement procedure is applied once at the beginning of a simu-
lation. The needed level of refinement is determined by calculating the smallest distance
between points in all profiles (above some minimal threshold) and equating that to the
minimal cell size required to resolve it. This level of refinement is applied to the entire
dam as a whole. Level-1 cells that are identified as being inside the dam are created within
the quadtree data structure and then refined one level. The resulting child cells are then
checked for being inside or outside the dam, and the procedure continues refining the new
cells up to the needed level. The bottom elevation of any cell found to be inside the dam
is initialized to the level of the dam’s crest for the initial time step. It is possible that
once a cell is refined, some of the child cells are inside the dam and some are outside. This
refinement procedure is recursive, meaning that when refining a given cell, a neighboring
cell is also refined if it differs by more than one level. Figure 1 shows the result of the
refinement process for a typical dam.

5



M.S. Altinakar, M.Z. McGrath and E. Miglio

Figure 1: Cells underneath a dam identified (left) and refined to level 4 (right).

4 TEST CASE

The model with quadtree refinement was validated against the existing model using a
test case from [5]. The computational domain was a 1000m wide and 1680m long area
with a flat bottom. A 1000m wide and 1280m long portion of the computational domain
was used to model a 19.35m deep reservoir having a storage volume of 24768000m3. The
remaining area downstream of this dam was initially dry. The dam had an 80-meter wide
section in the middle that was modeled with a linearly progressing breaching sequence.
The breaching started right at the beginning of each simulation. It took 2520 seconds (42
min) to attain the final trapezoidal breach geometry which had a bottom width of 46m
and a top width of 80m (side slopes approximately 0.9:1 horizontal:vertical). The reservoir
was allowed to drain through the breach into the downstream basin and freely exit the
domain. The scenario was simulated using regular mesh sizes of 5m, 10m, 20m, and 40m
per cell without refinement and again with the same regular mesh sizes in addition to
local refinement near the dam. In each case the simulation lasted 3000 seconds, which
was enough to fully model the breach widening and begin to capture the falling end of
the hydrograph.

The simulations without mesh refinement yielded the discharge hydrographs shown on
the left of Figure 2. Based on the assumption that finer mesh resolutions are better able to
capture the breach geometry sequence than the coarser meshes, the discharge hydrograph
using the 5m mesh was considered to be the most accurate, and other simulations were
compared to it. Figure 2 clearly shows that the breach discharge hydrograph depends on
the cell size used to represent the breach. The 80m-breach is represented with just two
adjacent cells in the 40m mesh, and this causes the peak discharge to be overestimated
by more than 25% compared to the 5m mesh hydrograph. It is interesting to note that
the differences between the results of the 10m mesh and the 5m mesh are small, which

6



M.S. Altinakar, M.Z. McGrath and E. Miglio

Figure 2: Dam breach discharge hydrographs for various mesh resolutions with no refinement (left) and
with refinement near the dam (right).

gives the notion that further refinement would yield little increase in accuracy.
A new series of simulations were also carried out using the three largest mesh sizes,

but locally refining the mesh in the area of the breach using the quadtree method. The
40m cells were refined three levels, 20m cells were refined two levels, and 10m cells were
refined one level. In each case the smallest cells in the quadtree mesh were 5m square.
The discharge hydrographs for these three simulations with quadtree mesh refinement are
plotted on the right part of Figure 2 together with the hydrograph simulated with the 5m
regular mesh over the entire computational domain.

It is evident that the local quadtree refinement of the mesh at the breach area allows a
computation with larger mesh sizes to better approximate the hydrograph obtained from
a 5m unrefined mesh, which was assumed to be best available estimation of the breach
hydrograph.

5 CONCLUSIONS

A local mesh refinement technique utilizing quadtree data structures was implemented
in an existing two-dimensional dam break flood model. This local refinement was used
to more accurately represent the progression of dam breach geometry while allowing the
mesh to remain coarse elsewhere in the domain. This resulted in reasonable agreement
with simulations where the entire mesh was refined, but required only a fraction of the
computational time. The method presented could be quite beneficial in situations where
many simulations are to be run to determine other simulation parameters, such as the
approximate length of time required for the flood wave to reach a certain location or
for determining an appropriate upstream reservoir elevation. The modeler is freed from
the burden of setting up additional meshes since the quadtree local mesh refinement
procedure is automatic. It should also be noted that the application of mesh refinement
is not a straightforward process, as quadtree can create some ambiguities. The previously-
mentioned case of determining a parent cell’s flow values when some child cells are dry
is one such ambiguity. Another ambiguity stems from the condition that if a cell has

7



M.S. Altinakar, M.Z. McGrath and E. Miglio

an adjacent cell that is simultaneously dry and has a higher bottom elevation than the
current cell’s water surface, the velocity in that is set to zero direction in the current cell.
However, if a cell is adjacent to a cell of higher refinement, and one of the adjacent refined
cells fulfills the condition while the other does not, the situation becomes ambiguous. The
current model does not set the velocity to zero in this case. However, these ambiguities
did not have any measurable influence on the numerical results, at least for the test cases
simulated so far. It may be possible to better represent the breach progression at all levels
of refinement by averaging the elevation of the breach geometry across the length of the
each cell representing the dam as opposed to using only the single elevation value at the
cell center. This is being implemented in a future version of the model.

REFERENCES

[1] M.S. Altinakar, M.Z. McGrath, Y. Ozeren and E. Miglio. Two-Sided Cut-Cell Bound-
ary Method for Simulating Linear Terrain features and 1D Stream Flows on a 2D
Rectangular Mesh. Proc. of the 33rd International IAHR Biennial Congress, August
9-14, 2009, Vancouver, Canada.

[2] M.S. Altinakar, M.Z. McGrath, Y. Ozeren and E. Miglio. Representation of Linear
Terrain Features in a 2D Flood Model with Regular Cartesian Mesh. Proc. of the
2009 World Environmental & Water Resources (EWRI) Congress, ASCE, May 16-23,
2009, Kansas City, Missouri.

[3] X. Ying and S. Wang and A. Khan. Numerical Simulation of Flood Inundation due
to Dam and Leave Breach. Proceeding of ASCE World Water & Environmental Re-

sources Congress 2003, (2003).

[4] H. Zeng and C. Shu and Y. Chew. An object-oriented and quadrilateral-mesh based
solution adaptive algorithm for compressible multi-fluid flows. J. Comput. Physics,
227, 6895–6921, (2008).

[5] S. Chayhan and D. Bowles and L. Anderson. Do current breach parameter estimation
techniques provide reasonable estimates for use in breach modeling? Dam Safety

2004, Proc., ASDSO 2004 Annual Conference, (2004).

8


