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Summary. This article deals with variably saturated flow modeling. Mixed Hybrid Finite 
Element (MHFE) methods have become popular in recent years for modeling groundwater 
flow. A new procedure of mass lumping, suitable for various shapes of 2D elements, is 
developed to avoid unphysical oscillations obtained with the standard MHFE scheme. 
Efficiency of this formulation is demonstrated for the simulation of sharp infiltration fronts in 
the vadose zone. 

 
 
1 INTRODUCTION 

Numerical simulation of variably saturated flow in porous media is of interest in many 
applications including geotechnical engineering, ground water hydrology, soil science, and 
environmental technology. Based on the assumption that the air phase in soil can move 
without any appreciable pressure gradients in the air phase, the Richards Equation (RE) is a 
valuable model to predict water movement and solute transport in variably saturated media1. 

From a mathematical point of view, the RE can be a highly nonlinear parabolic equation 
under unsaturated conditions, or a partial differential equation (PDE) of elliptic type for a 
fluid-saturated incompressible porous media. Mixed Hybrid Finite Elements (MHFE) are a 
numerical method becoming more and more popular in Geosciences. The method is well 
suited for the discretization of elliptic and parabolic PDEs. MHFE allow a simultaneous 
approximation of both pressure head and velocity and can handle general irregular grids with 
highly heterogeneous permeability. Hence, this numerical scheme has been extensively used 
in the last few years 2,3,4,5. 

However, when dealing with infiltration problem, especially sharp wetting fronts in dry 
soils, the MHFE results may exhibit solution with unphysical oscillations due to the non 
respect of the discrete maximum principle5,6. A technique commonly used in finite element 
methods is the so-called mass lumping technique : suitable quadrature formula allows to 
diagonalize the element matrices. This works nicely on rectangular meshes, where numerical 
quadrature makes mixed approximation equivalent to finite differences7. The procedure has 
been extended to triangular grids with the constraint of a weakly acute triangulation (see ref 
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in 4). A new mass lumping procedure for the MHFE, suitable for various shapes of 2D 
elements, has been proposed and tested for advection-dispersion problems 4 and generalized 
for variably saturated flow 8. 

This procedure allows to reduce the unphysical oscillations in many cases. However, when 
applied for distorted elements and/or anisotropic domains, the obtained solution is still 
exposed to strong unphysical oscillations and to convergence difficulties. To avoid this 
problem, we develop a new procedure that takes into account the anisotropy and the shape of 
the element during the masse distribution of the accumulation and sink/source terms at edges. 

In this work, the modified mass lumping technique is briefly described and discussed in the 
specific context of variably saturated water flow. A 2D numerical experiments in 
homogeneous porous media is provided to illustrate the benefits of this procedure. Other 
numerical test in heterogeneous will be presented at the meeting. 

2 THEORY 

2.1 Variably saturated flow modeling 
The combination of the Darcy Buckingham law and the mass conservation equation leads 

to the Jacob-Richards equation: 
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where H and h are the piezometric and pressure heads, respectively, such that H = h - z; z is 
the depth taken positive downward; Ss the specific storage coefficient; Sw (= θ / θs) is the 
relative saturation of the aqueous phase; θ is the volumetric water content; θs is the saturated 
water content; f is a source–sink term; and K is the hydraulic conductivity. Under unsaturated 
conditions, the porous media and the fluid are assumed to be incompressible (Ss = 0) and in 
this case, the Jacob–Richards equation reduces to the well-known RE. that will be considered 
in the rest of this article. 

This equation may be written in several forms with either the water content and/or the 
pressure head as main unknown. According to the chosen form, some care and specific 
adaptations have to be taken into account to conserve good mass balance or to simulate 
variably saturated flow. 

The interdependencies of pressure head, hydraulic conductivity, and water content are 
characterized using constitutive relations. According to recent studies 9,10, the standard 
Mualem–van Genuchten model 11 ha s to be modified by adding an air-entry value (he). The 
effective saturation (Se) is given by equation (2), where sθ  and rθ  are the saturated and 
residual volumetric water contents, respectively, α  a parameter related to the mean pore size, 
n a parameter reflecting the uniformity of the pore-size distribution and m 1 1 n= − . 
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The saturation at the cut-off point  is: eh
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The conductivity - saturation relationship becomes: 
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where  is given by equation (2) and . KeS n 1> s is the saturated conductivity (usually assumed 
as a scalar but could be a tensor for the general case). 

2.2 Lumped MHFE 

The basic idea of the new mass lumping procedure is firstly to calculate steady-state fluxes 
by using the classical MHFE method 7,12 and then to add the accumulation and sink/source 
terms directly on the edges (2D) / faces (3D). Hence, the process to get the lumped MHFE 
system associated with equatio  (1) involves the following steps: n

• The mean water flux  over the element E is defined via the lowest-order Raviart-
Thomas space: 

Eq

where  are the vectorial basis functions E,iω 12 and nf refers to the number of edges or 
faces. 

fn
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•  denotes the flux leaving E through the iE,iQ th edge / face. It is defined by: 
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where E,iQ  is the flux corresponding to the stationary problem without sink/source 

terms,  a pounding coefficient referred to as lumped coefficient,  is the 

sink/source term over the element E defined by 
E,iβ E sQ ,

E s
E

Q f d, .= E∫  and E  refers to the area 

of the element in 2D or volume in 3D. E,iTθ  and  are the mean values of the 
water content and the piezometric head respectively over the i

E,iTH
th edge / face of E (also 

called Traces of water content or piezometric head). 
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• The stationary part of the flux E,iQ  is expressed as 
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where KE is the value of the conductivity in element E. 
 
• Due to the (high) non-linearities of the relations between h - θ - k (equations (2) to 

(4)), the water content is expanded by means of a first-order Taylor series with respect 
to the traces of piezometric head 13. According to this linearization strategy, equation 
(6) becomes: 

TH
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, ,

 (7)
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where the local matrix  obtained with the lumped formulation is given by, EN⎡ ⎤⎣ ⎦
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In equation (8), (9) and (10), n refers to the time level, k to the iteration level and Δtn 
to the time step size between the new and the old time levels ( )n n 1 nt t t+Δ = − . TCE,i is 
the mean value of the capillary capacity at ith edge / face. 

 
• The final system to solve is obtained by writing the continuity of edge state variables 

 and fluxesE i E jTH TH=, ', 0E i E jQ Q+ =, ',  between two adjacent cells A and B. 
 

2.3 Analysis of matrix system and proposition of lumped coefficient 
The comparison of the flux obtained with the standard and the lumped formulations of the 

MHFE method can be interesting to illustrate the effect of the new procedure. Hence, the 
expression of the flux for the standard MHFE approach is given by equation (11). Notice that 
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n 1 k
E
+λ ,  and  of equation (11) can be computed through equations (9) and (10) by using 

mean value of the variable (i.e. on the cell) instead of traces of state variable (i.e. edge state 
variable). 
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Combining equations (8), (9) and (10) leads to the following expression of flux for the 
lumped MHFE method: 
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In previous studies 4,8, a simple formula βE,i = 1 / nf has been considered to define the 
lumped coefficient. Comparison of equation (11) and (12) shows that this strategy fails to take 
into account the specific geometry of each cell of the discretized domain. Moreover, the 
efficiency of the lumped method to avoid oscillation can be affected by this choice as it will 
be illustrated in the next part, dedicated to numerical simulations. 

Consequently, the new formulation is based on a following definition of the lumped 
coefficient:  
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Equation (12) indicates that only the diagonal term of the final matrix system is affected by 
the choice of the lumped coefficient. The analysis of the matrix system according to the M-
matrix criterion, which specifies the mathematical condition to respect the maximum 
principle, has shown that off-diagonal coefficients raise the main difficulties 4,8. Then, the 
new mass lumping formulation will maintain the global properties of the previous one (see 8), 
in summary: 

• for 1D problem and contrary to the standard MHFE scheme, the new solution does not 
contain any unphysical oscillation; 

• for triangular dsicretization, oscillation are strongly reduced and in case of an accurte 
triangulation they are totally removed; 

• for quadrangular meshes, a subdiscretization technique 8 is advised to improved the 
monotonicity of the solution. 

Furthermore, the new formulation allows to handle complex mesh geometry and to increase 
local monotonicity (between traces and mean pressure head) compared to our first 
proposition. 
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3 RESULTS AND DISCUSSION 
The infiltration of a sharp wetting front has been simulated in this test case which is 

completely characterized by table 1. In fact, this 2D example reduces to a 1D problem 
because of the homogeneous porous media and uniform boundary conditions along each 
border. However, several mesh discretization are compared to illustrate the impact of mesh 
size ratio (∆z / ∆x) which is an important issue when more complex geometry (small depth 
and large width - length) and evolution are considered. 

 
Parameters value 
Dimensions of the domain x Є [0 ;3 m], z Є [0 ;3 m] 

θr = 0.102 (-) 
θs = 0.368 (-) 
α  = 3.3 (m-1) Soil characteristics n = 2 (-) 
he = 2 10-2 (m) 
Ks = 9.22 10-5 (m.s-1) 

Initial pressure head Th(t = 0) = - 1.15 m 
Top boundary condition TH(z =  0 m , t ) = 0 m 
Bottom boundary condition TH(z =  3 m , t) = - 4.15 m 

Q(x =  0 m and x = 1 m, t) = 0 m.s-1Lateral boundary condition 
Final time 1800 s 

1 (mesh-1); 10-1 (mesh-2); 10-2 (mesh-3) Mesh size ration Δz / Δx 
Fixed time step, Δt 10 s 
  

Table 1 : Simulation’s characteristics 
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Figure 1: Evolution of the infiltration front (mean pressure head and traces of pressure head) for both LMHFE 
approaches after 1800 s. 
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Figure 1 shows that the decrease of the mesh size ratio produces two main effects on the 
old lumped MHFE formulation. Firstly, it significantly reduces the accuracy of the mean 
pressure head solution. On the other hand it causes oscillations between the different traces of 
pressure head. Notice that these unphysical oscillations disappear from the mean pressure 
head solution and that mass-balances are correct for all the simulations, which could mask this 
problem. However, this numerical failure amplifies with the decrease of the mesh size ratio. 
This simple example shows that the definition of the lumped coefficient is a crucial point. The 
modified mass lumping scheme is more stable for both traces and mean pressure head. 
Consequently, it is a better formulation to handle more complex shape of elements. 

Results of other investigations in heterogeneous media will be presented at the next 
CMWR meeting to illustrate the benefits of the new mass-lumping method. 
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