
XVIII International Conference on Water Resources 
CMWR 2010 

J. Carrera (Ed) 
CIMNE, Barcelona 2010 

 

CONSTRAINING METHODS FOR DIRECT INVERSE MODELING 
W. Zijl * , G.A. Mohammed* ####, O. Batelaan*† and F. De Smedt* 

 

* Dept. of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel 
Pleinlaan 2, 1050 Brussels, Belgium 

e-mail: vub@zijl.be, web page: http://www.vub.ac.be/hydr 
 

# Present address: Department of Geoscience, University of Calgary, Calgary, Canada 
 

† Dept. of Earth and Environmental Sciences, K.U.Leuven, Heverlee, Belgium 
e-mail: okke.batelaan@ees.kuleuven.be, web page: http://geo.kuleuven.be/ag&m/index.htm 

 

Key words: constraining, direct inversion, hydraulic impedance tomography 

Summary. We consider 3-dimensional groundwater flow models based on the block centered 
finite difference method. In a forward model the hydraulic conductivities are given in every 
grid block, and at each face on the boundary (including the wells) either the flow rate or the 
head is specified. In an inverse model conductivities are unspecified in a number of grid 
blocks, while both flow rate and head are specified in a number of boundary faces. Direct 
inversion means that the conductivities are obtained directly from Darcy’s law. In the Double 
Constraint Method (DCM) grid block conductivities are initially estimated. From a forward 
run with flow rate boundary conditions all flow rates are calculated, and from a forward run 
with head boundary conditions all head gradients are calculated. Then, for each grid block the 
conductivity is updated using Darcy’s law: conductivity is equal to minus the calculated 
specific flow rate divided by the calculated head gradient. Finally, artificial anisotropy is 
removed by iterations. DCM has been applied successfully and to make the method more 
flexible we have developed an extension called Hydraulic Impedance Tomography (HIT). A 
system of linear algebraic “back projection” equations for the grid block impedivities (the 
inverses of the conductivities) is based on flow rates calculated by a forward run with flow 
rate boundary conditions. This system is solved with head boundary conditions. Synthetic 
examples show that the method works well. In practical applications heads (obtained from 
observation wells) and flow rates (obtained from recharge data) are time-dependent. As a 
consequence, time series of impedivities obtained by HIT may be considered as noisy 
observations.  
 
 
1 INTRODUCTION 

3-Dimensional incompressible groundwater flow through an undeformable porous medium 
is governed by the continuity equation and Darcy’s law 

∇⋅q = 0 
(1) 

q = −k∇ϕ (2) 
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The water table height is given by 

z = h(x,y,t) (3) 

Defining f(x,t)=h(x,y,t)−z, the boundary conditions on the water table are 

θ df/dt = r 
(4) 

ϕ = h (5) 

Since condition (4) is time-dependent, flux density q(x,t) and head ϕ(x,t) are time-dependent 
too, while conductivity k(x) is time-independent. θ(x,y,z=h,t) is the effective porosity (specific 
yield); r(x,y,t) is the recharge (effective precipitation); x, y and z are respectively the two 
horizontal coordinates and the upward directed vertical coordinate; in this coordinate system, 
which is fixed to the earth, ∂f/∂t is the time derivative; df/dt ≡ ∂f/∂t + (q/θ)⋅∇f represents the time 
derivative in a coordinate system fixed to a flowing “fluid particle.”  

In a forward problem conductivity k(x) is specified in each point of the modeling domain D, 
while in each point of its boundary ∂D either normal flux density (q⋅n)∂D or head ϕ∂D is specified 
(wells are considered as internal boundaries). When both normal flux density and head are 
specified in NFH boundary “points” (including wells), conductivity can be determined in NFH − 1 
internal “points.” This is generally called inverse modeling.  

From now on we consider discrete models. In hydrological models the number of grid 
block conductivities, NV, is generally greater than the number of specified flux-head pairs 
minus one, NFH − 1. In that case NV − NFH + 1 conductivities have to be determined from 
“hydrological perception,” similar to forward modeling where all NV conductivities have to be 
“perceived” from other sources of knowledge.  

Direct inversion means that the conductivities are derived directly from Darcy’s law: 
conductivity is equal to flow rate divided by head gradient. Section 2 introduces the Double 
Constraint Method (DCM). Section 3 introduces Constrained Back Projection (CBP). We 
focus on Hydraulic Impedance Tomography (HIT); that is, the version of CBP compatible 
with models based on the block centered finite difference method (e.g. MODFLOW). Section 
4 presents examples and section 5 summarizes and introduces future work.  

 

2 THE DOUBLE CONSTRAINT METHOD 

In the Double Constraint Method (DCM) estimated initial (“old”) conductivities kold are 
assigned to the grid blocks. From a forward run with the known fluxes as boundary 
conditions, all fluxes are calculated. The thus obtained flux densities qF

i, i=1,2,3, honor the 
continuity equation and the known boundary fluxes. From another forward run honoring the 
known heads as boundary conditions, all heads ϕH are calculated. Darcy’s law using qF

i and 
∂ϕH/∂xi = −qH

i/k
old for each grid block yields the improved (“new”) conductivities knew

i = kold qF
i/q

H
i. 

To avoid division by zero, qF
i/q

H
i is replaced with (qF

i + qε)/(qH
i + qε), where qε ≥ 0 is a relatively 

small flux density  

knew
i = kold (qF

i + qε)/(qH
i + qε) (5) 

A “mixing” rule, for instance 
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knew = (knew
1)

β1(knew
2)

β2(knew
3)

β3 
(6) 

βi = [(qF
i)

2+(qε)2]/[qF⋅qF+3(qε)2]  

yields isotropic conductivities that are used as “old” ones for a second iteration step, and so on 
until convergence to isotropy; that is, until convergence to knew

1 ≅ knew
2 ≅ knew

3 ≅ knew.  
The Double Constraint Method has been applied successfully.1,2,3,4 However, it is 

sometimes difficult to remove artificial anisotropy.5 Moreover, approximation of grid block 
fluxes from the calculated face-based fluxes introduces inaccuracies. Finally, DCM cannot 
handle accurately conductivities that are not allowed to be updated. For those reasons the 
related, but more flexible Hydraulic Impedance Tomography (HIT) is presented in section 3. 
However, DCM remains valuable as a preconditioner of HIT.6  

 

3 CONSTRAINED BACK PROJECTION 

Discretized groundwater flow equations are generally based on the block centered finite 
difference method, in which the heads are defined in the grid block centers. The resulting 
system of algebraic equations can be written as 

DKDT Φ = DKΠ (7) 

DKDT is the system matrix; Φ is the column of NV block centered heads; Π is the column of NBF 
boundary heads specified in the centers of the NBF boundary faces (components of Π on 
internal faces equal zero); K is the conductance matrix; D is the incidence matrix relating grid 
blocks to grid faces.7,8 The heads Φ can be pre-calculated by a constraining forward run with 
head boundary conditions, like in the Double Constraint Method (section 2). Then system (7) 
can be used with flux boundary conditions to determine the conductivities by back projection. 
However, conductance matrix K is nonlinear in the conductivities, which makes it unattractive 
to base Constrained Back Projection (CBP) on this system. 

3.1 Hydraulic Impedance Tomography 

Fortunately, we can construct a system of linear back projection equations based on the 
mathematically equivalent formulation of Darcy’s law (2), ∇×γq=0 (γ=k−1), plus boundary 
conditions.7,8 In discretized form this approach yields the system 

RT Γ(Y)Q = −RT Π (8) 

Incidence matrix R relates the grid’s edges to its faces, and Q is the column of fluxes through 
the faces. Impedance matrix Γ = K−1 is linear in the impedances γ = k−1. That is, Γ = Γ(Y), where 
Y = (γ1,…,γNv)

T is the array of grid block impedances. Therefore, this version of CBP is called 
Hydraulic Impedance Tomography (HIT). The fluxes Q are pre-calculated in a forward run 
(using MODFLOW, say) with the flux boundary conditions, like in the Double Constraint 
Method (section 2). These fluxes honor the continuity equation and the known boundary 
fluxes. Substitution of these fluxes into the above system results in the system of linear 
algebraic equations AY = B, from which the impedivities Y can be determined. Back projection 
matrix A is defined by AY = RT Γ(Y)Q, while B = −RT Π is the right hand side vector.9,10,11. Since 
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the number of algebraic equations is generally greater than the number of impedances, a least 
squares solver is applied 

(ATA + Iε)X = AT (B − AYold) (9) 

where X = Y − Yold. Iε is a diagonal regularization matrix with components equal to (qε∆)2; qε ≥ 0 
is a relatively small flux density and ∆ is a representative grid block dimension. Also other 
least squares methods may be attempted, e.g. QR decomposition. The least squares approach 
honors Darcy’s law and the known boundary heads in a least squares sense. Outer iterations 
may improve point-wise honoring.  
 

4 NUMERICAL EXAMPLES 

In most hydrogeological models the number of grid blocks, NV, is generally much greater 
than the number of measured flux-head data, NFH − 1. Nevertheless, because of the 
mathematical challenge, the case NV << NFH − 1 has been chosen to test HIT for a number of 
synthetic problems.9,10,11 In this case the solution of the inverse problem (i.e., the grid block 
conductivities) is independent from the initial conductivities. Moreover, if such an inverse 
problem is based on arbitrarily chosen flux-head boundary conditions, a solution exists only 
in a generalized sense. That is, application of the generalized conductivity solution to a 
forward problem with flux boundary conditions results in a head solution that honors the head 
boundary conditions only in a least squares sense (see section 4.1). Only if the flux-head 
boundary conditions are chosen consistent with the solution of a forward problem, the outer 
iterations converge to a classical solution, i.e., to conductivities in which the boundary 
conditions are honored point-wise (see section 4.2). In the examples presented below, the 
linear equations have been solved using conjugate gradients with diagonal scaling, without 
regularization (Iε = 0). 

4.1 Example 1: Three layers 

Example 1 considers three layers with reference conductivities of respectively 2, 4 and 3 
m/d. Table 1 shows discretization characteristics. As reference boundary conditions we 
consider heads that decrease linearly from 5m on the west boundary to 0 on the east boundary. 
A forward run based on these reference conditions yields fluxes, Q, of respectively 10, 30 and 
15 m3/d through the three layers.  

 
Table 1: Fine-scale grid and back projection equations for example 1 

volumes, 
impedances 

faces, fluxes boundary faces, 
boundary heads 

 

edges, equations 
RT Γ(Y)Q = −RT Π 

linearly 
independent 
equations 

NV = 300 NF = 1060 NFH = 320 NE = 1243 NF − NV = 760 
 

Now we forget the reference (“old”) conductivities. Instead we consider “new” 
impedivities Y = (γ1,…,γNv)

T. Substitution of the calculated fluxes Q into the left hand side of 
equation (8) yields back projection matrix A multiplied by the unknown impedivities Y, i.e., 
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AY = RT Γ(Y)Q. Head boundary conditions Π are substituted into the right hand side of equation 
(8), B = −RT Π. The back projection run based on system (9) yields the new grid block 
impedivities.  

First we apply the reference head boundary conditions. In this case back projection yields 
new conductivities that are equal to the reference ones, as it should be. 
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Figure 1: (a) block centered heads and (b) relative errors in top layer impedivities when using 1% noise in (i) 

west and (ii) top boundary heads 
 
Secondly, we specify on the west boundary heads that are perturbed randomly with a 

relative standard deviation of 1% with respect to the reference boundary heads, while the 
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other boundary heads are kept equal to the reference conditions. The new impedivities are 
calculated by back projection system (9). These impedivities are used in a forward run with 
the reference fluxes on the boundaries. The resulting internal fluxes (now deviating from the 
internal reference fluxes) are substituted into the left hand side of equation (8) to determine 
the new back projection matrix A. Again the impedivities are calculated by back projection. 
And so on. These outer iterations are terminated when the boundary heads calculated by the 
forward run do no longer come closer to the specified boundary heads. In this case only one 
iteration was needed. Near the west boundary, where the noise is introduced, the calculated 
impedivities have a relative deviation of 16% with respect to the reference impedivities (an 
absolute deviation of 0.08 d/m); close to the east boundary the deviation reduces to 2% 
(Figure 1b(i)). A forward run based on these impedivities shows that uniformity of flow is 
preserved: the heads in the grid block centers decrease globally from 4.5m west to 0.5m east, 
although they differ slightly from the reference values (Figure 1a(i)).  

Finally we consider heads that are perturbed with 1% on the top boundary; the other 
boundary heads being equal to the reference conditions. The outer iterations were terminated 
after 3 iterations. Near the top boundary, where the noise is introduced, the calculated 
impedivities have a relative deviation of 11% with respect to the reference impedivities (an 
absolute deviation of 0.06 d/m) (Figure 1b(ii)). Close to the bottom boundary the deviation 
reduces considerably. The forward run based on these impedivities shows that the flow 
deviates from uniform flow: isolines of heads do no longer form straight lines. (Figure 1a(ii)). 
However, for the middle and bottom layer the head patterns come closer to uniform flow. 

Many more examples have been tested. In all cases the inverse solution turns out to be 
stable under perturbations and the outer iterations always converge (never diverge).10 

4.2 Example 2: Homogeneous medium and checkerboard pattern 

Example 2 considers a case in which the flux-head pairs on the boundaries are consistent with 
a homogeneous porous medium having a conductivity of 10 m/d. That is, the truth pattern is 
homogeneous. However, the initial impedivity pattern has been chosen as a checkerboard 
pattern with conductivities of 1 m/d and 100 m/d. Figure 2 and Table 2 present the 
discretization characteristics. 
 

Table 2: Fine-scale grid and back projection equations for example 2 
volumes, 

impedances 
faces, fluxes boundary faces, 

boundary heads 
 

edges, equations 
RT ΓQ = −RT Π 

linearly 
independent 
equations 

NV = 1600 NF = 6480 NFH = 3360 NE = 8241 NF − NV = 4880 
 
Notwithstanding the poor initial guess, HIT recovers the homogeneous impedivity image (the 
truth) after approximately 60 outer iterations.  

Alternatively, we have also considered the case where the flux-head pairs on the 
boundaries are consistent with the checkerboard pattern (the truth pattern in this case). Now 
we have chosen a homogeneous initial impedivity pattern. Also here, in spite of the poor 
initial guess, HIT recovers the checkerboard pattern, again after approximately 60 iterations.10 
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5 SUMMARY, CONCLUSIONS AND FUTURE WORK 

We have presented two related direct inversion methods: (i) the Double Constraint Method 
(DCM) and (ii) Hydraulic Impedance Tomography (HIT). The methods condition the grid 
block conductivities of a block centered finite difference model (MODFLOW, say) in such a 
way that the groundwater flow honors both specified heads and fluxes on the boundary. If the 
number of measured flux-head pairs minus one, NFH − 1, is less than the number of grid block 
conductivities, NV, the conductivities determined by inversion do not only depend on the 
specified flux-head pairs, but also on the initial conductivities. These initial conductivities 
reflect general hydrogeological knowledge. If, on the other hand, NFH − 1 is greater than NV, the 
conductivities determined by inversion are independent from the initial conductivities, as has 
been demonstrated by synthetic test examples.  

 

 
Figure 2: Dimensions of the fine-scale model example 2 with checkerboard impedivity pattern 

 
DCM has been applied successfully since the 1980th.1,2,3,4,5,6 However, its generalization to 

HIT is a relatively new development that promises to make DCM more flexible. Numerical 
optimization—for instance the use of DCM as a preconditioner for HIT—is considered as 
future research.  
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In practical applications heads (obtained from observation wells) and fluxes (obtained from 
recharge data) will be noisy (inaccurate). As a consequence, the conductivities determined by 
direct inversion will differ from measurement to measurement. We propose to consider the 
thus-obtained time-dependent conductivities as observations in the observation model of a 
Kalman Filter. The process model is: conductivities at time t+∆t are equal to conductivities at 
time t. This way a time-independent conductivity estimate with uncertainty less than the noise 
level can be obtained. Kalman Filter inversion based on the above process model has been 
applied successfully already since the 1990th.12,13 However, to ensure for the case NV >> NFH − 1 
that hydrogeological perceptions be preserved, we propose to extend this Kalman Filter 
practice by introducing the above defined “observed conductivities”.14   
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