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Summary: The Eulerian-Lagrangian Localized Adjoint Method (ELLAM), introduced by 
Celia et al.1, is an interesting alternative to standard methods to solve advection dominated 
transport equations. It preserves the performance of characteristic methods and treats general 
boundary conditions naturally in their formulations. 
A new ELLAM formulation was developed by Younes et al.2 for unstructured triangular 
meshes. This formulation avoids unphysical oscillations and numerical diffusion when several 
time steps are used. The method requires a very limited number of integration points (usually 
1 per element) and is therefore highly efficient. In this work, we show applicability and 
performances of this method for highly heterogeneous domains containing injection and 
pumping wells.  
 
 
 
1 INTRODUCTION 

The incidence of contamination and pollution of groundwater resources demands accurate 
description and understanding of contaminant transport in porous media. The mathematical 
model describing transport in porous media is usually an advective-diffusive-equation (ADE) 
which has the following formulation: 

 .( ) .( . ) 0C C C
t

∂
+∇ −∇ ∇ =

∂
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with ∈Ωx  and [ ]0,t T∈ . 

Where ( , )C tx  -3[M.L ]  is the unknown concentration at location x  and time t  and D  
2 -1[L .T ]  the dispersion tensor defined by 
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V -1[L.T ]  is a given fluid velocity of components iv  and jv ; Lα  and Tα [L] are respectively 

the longitudinal and transverse dispertivities; ijδ  is the Kronecker delta function; mD 2 -1[L .T ]  
is the molecular diffusion coefficient and T  is the end of the time period starting at time zero. 
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Equation (1) is subject to the following initial and boundary conditions: 
 0              ( ,0) ( ),    C C= ∈Ωx x x  (3) 
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where Ω  is a domain of 2R ; 1∂Ω , 2∂Ω and 3∂Ω are partitions of the boundary ∂Ω  of Ω  
corresponding to Dirichlet, Neumann and total flux boundary conditions; and ∂Ωη is the unit 
outward vector normal to the boundary ∂Ω . 
 
Classical Eulerian methods such as finite differences or finite elements are not suitable for the 
solution of the transport equation. Indeed, these methods can generate numerical solutions 
with artificial diffusion and/or non-physical oscillations when advection is dominant3. Very 
fine spatial and temporal discretizations can be used to improve the quality of the results but 
at the cost of an important computational effort. 
 
Because of the hyperbolic nature of advection, characteristic analysis is natural to aid in the 
solution of equation (1) and has led to many related approximation techniques including 
Eulerian-Lagrangian methods (ELM) and method of characteristics (MOC)4. With these 
methods the advective component is treated by a characteristic tracking algorithm and the 
diffusive step is treated separately using an Eulerian approximation. Therefore, the Courant 
number limitation of purely Eulerian methods is avoided because of the Lagrangian treatment 
of advection1. However, these methods fail to conserve mass and are unable to rigorously 
treat boundary conditions5. 
 
The Eulerian-Lagrangian localized adjoint method was developed about 20 years ago by Celia 
et al.1. The ELLAM is an improved characteristic method which uses space-time test functions. 
The method conserves mass and treats general boundary conditions naturally in its 
formulation. A review of the researches done on the ELLAM is given by Russell and Celia6. 
 
Many formulations of the ELLAM were developed during last years (Healy and Russell5, 
Russell and Celia6, Binning and Celia7, Younes8, Younes and Ackerer2)  
Almost all developed ELLAMs suffer from non-physical oscillations and/or numerical 
dispersion. Indeed, for unstructured meshes, oscillations can appear because quadrature 
weights (defined at the old time level) will not necessary sum up to the correct volume for 
each mesh element at the new time level. This phenomenon can be minimized by using 
Strategic Space Integration Points (SSIP) coupled with the backtracking approach5. 
Furthermore, it is also known that Eulerian-Lagrangian methods perform well for problems in 
which they can successfully use a large time step but they can suffer from numerical 
dispersion introduced by interpolation at each time step when the method is used with several 
time steps9. 
 
To overcome these difficulties, a new formulation of the ELLAM was developed by Younes 
et al.2 to solve the Advection Dispersion transport Equation (ADE) on unstructured triangular 
meshes. The new scheme requires a very limited number of integration points (usually one per 
element) even for unstructured meshes. With this scheme, only strategic integration points are 
used as numerical integration points. Location of strategic integration points and weights are 
assigned at the new time level and then backtracked to the old time level without 
redistributing the weights. In order to avoid excessive numerical diffusion when dealing with 
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several time steps, continuous characteristics are used and only changes due to dispersion are 
interpolated to obtain the concentration at the foot of each characteristic.  
In the following, we show applicability and efficiency of this scheme for highly 
heterogeneous domains including injection and pumping wells. 
 

2 THE NEW ELLAM FORMULATION FOR ADE 

The weak formulation of equation (1) using space-time function ( , )x tω  leads to: 

 
0

.( ) .( . ) 0
T C C C dxdt

t
ω ω ω

Ω

∂⎡ ⎤+∇ −∇ ∇ =⎢ ⎥∂⎣ ⎦∫ ∫ V D  (4) 

( , )x tω  is defined for 1,n nt t t +⎡ ⎤∈ ⎣ ⎦  and verifies the local adjoint equation: 

 . 0D
Dt t
ω ω ω∂
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∂

V  (5) 

 
Therefore, the ADE to solve becomes (for details, see7) 
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Terms of this equation correspond respectively to the mass concentration at the new time 
level ( 1)n + , the dispersion exchange, the mass concentration entering or leaving the domain 
from boundaries and the mass concentration at the old time level ( )n . 
The main difficulty of ELLAM is the evaluation of the mass concentration at the old time 
level ( )n . This term is approximated with a numerical quadrature using EN  integration points 
with their corresponding space weights p

EW : 

 
1
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E p
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The integration points are located at px at time nt  and tracked forward to px at 1nt +  to 
evaluate 1( , ) ( , )p n p nx t x tω ω +=  or tracked backward from px at time 1nt +  to px  at nt  to find 

1( , ) ( , )p n p nx t x tω ω+ = . The concentration ( , )n p nC x t  is evaluated by linear interpolation of 
the known solution at the nodes of the mesh. 
 
The ELLAM formulation developed by Younes et al.2 requires the following three stages: 
 

a- First, we place P  integration points strategically in the centre of all elements at each 
time level. The weights PW correspond to the area of each element. Then, each particle is 
tracked backward from its position p

finx  at 1nt +  to the departure position p
inx  at time 0t =  or 

until we reach the boundary of the domain. Here, we can differentiate particles entering the 
domain from the boundary ( 0)t ≠  and particles which are initially located inside the domain 
( 0)t = .  
 

b- Initial concentration of all particles located inside the domain (with 0t = ) are 
evaluated by interpolating the known concentrations at the nodes of the mesh. Then, particles 
are tracked forward to the next time level. Only particles which arrives at the centre of 
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elements are used to obtain the solution of the equation (6). This gives us the new 
concentration adv disp

iC +  by advection and dispersion at each node i  of the mesh. 
 

c- The third step consists in updating particle’s concentration new
pC  which serves to 

calculate the concentration for the following times steps. In this purpose, we interpolate only 
the change by dispersion in order to reduce numerical dispersion introduced by interpolation 
as shown by Younes et al.10 

 
To take into account sink and source terms for the transport problem, cells containing the 
injection (respectively the pumping) well should be small enough to have only outflow 
(respectively inflow) at all cell edges. In this case, the boundaries of the cell containing the 
well are considered as the boundaries of the domain for the transport simulation. The particles 
which cross these edges during backtracking are considered as boundary integration points. 
 
This ELLAM formulation is compared to the Galerkin Discontinuous Finite Element Method 
(DFEM) for transport problems on highly heterogeneous domains. 
 
 
 
3 NUMERICAL EXPERIMENTS  

a- Test case 1: 

 

The spatial domain Ω  is a unit square with sand (blue) and clay (red) as shown in figure 1. 
18000 triangular elements are used for the spatial discretization. A flux of 

1 -11.10 m.dayinQ −= −  is prescribed at the left lower corner and a flux of 1 -11.10 m.dayoutQ −=  
in the upper right corner. The stationary flow problem is solved with the lumped mixed finite 
element method11, the velocity is defined everywhere in the field and is continuous across the 
inter-element boundaries. The pressure distribution and the velocity field are shown in figure 
2. 
 
The boundary conditions for the transport problem are of Dirichlet type at the inflow (left 

lower corner) 
-1

-1

1 mg.L  for  0 and 0.015
1 mg.L   for  0.015 and 0

C x y
C x y
⎧ = = <
⎨

= < =⎩
 (8) 

 
The dispersion parameters are:  2 32.10 m,  2.10 msand sand

L Tα α− −= =  for the sand and for the clay 
4 52.10 m,  2.10 mclay clay

L Tα α− −= = . The molecular diffusion is fixed to 10 2 -13 6 10 m .day, . − . 

Simulations are performed for a final time of 2,5 days. The CPU_times as well as the 
maximum and the minimum values of obtained concentrations with ELLAM and DFEM are 
shown in Table-1. 
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Figure 1: Domain with sand and clay Figure 2: Pressure and velocity fields 
 

METHOD ELLAM DFEM 

CPU_time (s) 4.796 101.42 

Max concentration (mg.L-1) 1.0 1.0 

Min concentration  (mg.L-1) 0 0 

Table-1: Results of ELLAM and DFEM for case-1 

 

The results show that the DFEM requires much more computational time than the ELLAM. 
Indeed, contrarily to ELLAM, the DFEM requires small time steps to fulfil the CFL 
constraint. 

 

Obtained results with both methods are visualized in figures 3 and 4. 

 

 
Figure 3: Concentration obtained with New_ELLAM Figure 4: Concentration obtained with DFEM 
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b- Test case 2: 

 

The second test case is a highly heterogeneous domain (sand and clay) with injection and 
pumping wells. The spatial domain Ω  has a rectangular shape (0,140) (0,70)×  which is 
partitioned into 10000 triangular elements (figure 5). The values of the flow rate in the 
injection and the pumping wells are 3 -15m .dayinj pumpQ Q= − = . A fixed head 15 mlefth =  is 

imposed at the left boundary of the domain and 0righth = m at the right boundary. The flow equation 
is solved with the mixed finite element method (figure 6). Transport results obtained with 
both methods are given in table 2. 
 

Figure 5: Domain discretized with triangular element Figure 6: Pressure and velocity field 
 
A fixed concentration of -11mg.LC =  is prescribed at the injection well during 800 days. The 
dispersion parameters are similar to case 1. 
 

METHOD ELLAM DFEM 

CPU_time (s) 27.68 104.68 

Max concentration (mg.L-1) 1.0 1.0 

Min concentration  (mg.L-1) 0 0 

Table-2: Comparison of acquired results for case-2 

 
The concentration distributions obtained with both methods are shown in figures 7 and 8. 
 

 
Figure 7: Concentration obtained with New_ELLAM Figure 8: Concentration obtained with DFEM 
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Similar results are obtained. As previously, the DFEM is less efficient than the ELLAM. The 
ELLAM formulation is able to treat accurately general problems on heterogeneous domains 
with sink/source terms. 
 
 
 
 
4 CONCLUSIONS AND PERSPECTIVES 
The ELLAM is used on triangular meshes and highly heterogeneous domains with injection 
and pumping wells. The ELLAM formulation appears to be accurate and very efficient since 
it can be used with large time steps. The number of integration points is very limited and 
unphysical oscillations are avoided. 
 
The next step of this work is to combine the ELLAM formulation with the Sequential Non 
Iterative Approach to solve advective-diffusive-reactive transport equation with 
biodegradation. 
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