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Summary. In this paper we derive closed-form constitutive functions for a vertically
integrated model including gravitational and capillary forces. Such models are appropriate
for CO2 storage, and we use our derived functions to show the impact of capillary forces on
tip migration speed. A particularly striking aspect is how capillary forces, while entering
dispersive terms in the the fine-scale three-dimensional equations, appear in non-linear
self-sharpening terms in the integrated equations. We highlight the physical interpretation
of this change in character of the equations in the discussion.

1 INTRODUCTION

In the context of geological storage of CO2, vertically integrated forms of governing
equations in porous media have been gaining interest. Vertically integrated models cou-
pled with a sharp interface assumption were initially applied to analyze the injection
phase [7, 6]. This analysis was extended to more complex systems, with an emphasis on
leakage and risk [9, 10]. Subsequently, sharp interface models were applied in the con-
text of long term plume migration, particularly considering sloping formations [2, 3], and
flow of background fluids [4]. Recent work has also looked at numerical solutions to the
vertically integrated equations, with application to real field data [1].

While sharp interface models are attractive due to their simplicity, they neglect the
impact of capillary forces on the fluid distribution. This omission is important if capillary
forces lead to a transition zone that is appreciable on the scale of the aquifer, and if
the fluid flow is slow enough to allow this transition zone to form. The former of these
conditions is satisfied for many plausible injection sites of CO2, while the latter condition
will usually be satisfied for late-time buoyant migration.
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Inclusion of capillary forces in vertically integrated models has a history in the petroleum
literature (see e.g. [5, 11]). Recently the authors revisited these models, and considered
their impact on plume evolution during injection, flow to a leaking well, and finally mi-
gration under a sloping aquifer [8]. This study showed that the capillary fringe may have
a strong impact on CO2 migration.

A drawback with including capillary forces in vertically integrated models is that
the upscaled pseudo-functions become significantly more complex, and in particular, the
pseudo-capillary-pressure-saturation relationship is defined through its inverse. Thus, the
pseudo-functions are usually calculated numerically. The lack of analytical expressions
for the pseudo-functions clouds our insight into the impact of fine scale processes on the
integrated scale.

Here, we look at a vertically integrated formulation with capillary and buoyant forces.
Using a particular choice of capillary-pressure-saturation and relative permeability curves
on the fine scale, we are able to calculate analytically the integrated pseudo-functions.
With these pseudo-functions, we analyze the impact of the capillary forces on the fine
scale on the tip speed for upslope plume migration.

2 Model Equations

The vertically integrated equations for porous media have the same structure as the
fine scale equations [5, 8]. Thus for two-phase immiscible, incompressible flow we can
write mass conservation as

Φ
∂Sα
∂t

+∇ · Uα = 0, (1)

where the Darcy flux vector is given by

Uα = −KΛα(Sα)(∇Pα − ραG). (2)

Here we note that capital letters denote the coarse scale variables, which are integrated
porosity (Φ), average saturation (Sα) of phase α, integrated permeability K, coarse mo-
bility Λ, bottom-aquifer pressure Pα and gravity G. The phases will be denoted α = w
for wetting (brine) and α = n for non-wetting (CO2).

Our emphasis in this paper is the pseudo-functions, and we will therefore simplify the
system by assuming that the aquifer is flat with a tilt θ, and that the coordinate system
is aligned with the tilt. Then we define the coarse pressure as the pressure at the bottom
of the aquifer, and the mobility and gravity terms are defined as

Λα ≡ K−1
∫ H

0
kλα(ŝα)dz and G ≡ −g sin θ∇x (3)

In this notation, the aquifer bottom is aligned with z = 0, while the top of the aquifer is
z = H. Fine scale functions are denote by small letters, permeability (k) and mobility λ.
We have denoted a saturation distribution by ŝα. This is the critical object of modeling.
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If the saturation is assumed to be strictly segregated by a sharp interface, so that ŝα is
a (scaled) Heaviside function of z, then the integral simplifies such that the mobility is
directly proportional to the region with fluid α, in other words Λα(Sα) ∼ Sα. Conversely,
we will be interested in the case where the vertical saturation distribution is obtained
from a balance of capillary and gravitational forces.

2.1 Capillary fringe pseudo-functions

Consider fluids in equilibrium, and denote the coarse fluid pressure as the pressure at
the bottom of the aquifer Pα = pα(z = 0). Then, for constant density fluids, the vertical
pressure distribution is

pα(z) = Pα − ραgz. (4)

If the fluids also honor the capillary-pressure-saturation curve, denoted pcap(s) = pn−pw,
we have that the saturation must satisfy

pcap(ŝ(z)) = P cap + ∆ρgz. (5)

Here we have denoted the pressure difference as ∆ρ ≡ ρw − ρn, which will be positive for
our fluids. Physically measured capillary-pressure-saturation curves, while hysteretic, are
always monotonic, so we will assume this function is (locally) invertible, and also write
the inverse function as scap. By inverting Equation (5) we have the vertical saturation
distribution

ŝα(z) = scapα (P cap + ∆ρgz). (6)

From this, the coarse (average) saturation can be defined, so that

Sα =
1

H

∫ H

0
ŝ(z)dz. (7)

By eliminating ŝ from equations (6) and (7), the coarse capillary-pressure-saturation
functions can be obtained; Scap, which can be shown to be monotone, and therefore also
P cap exists. With these functions, and Equations (3) and (6), all coarse pseudo-functions
can be defined.

3 Example calculation of analytical pseudo-functions

In general, the P cap can not be obtained analytically from equations (6) and (7), and
a numerical implementation is necessary. This is straight-forward, however intuition is
lost. Fortunately, an important special case, which is physically reasonable, can be solved
analytically. We present this calculation here.

We set the fine scale capillary pressure as

pcap(sn) = α(1− sn)−1/2 + β. (8)
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We observe that γ ≡ α + β is the entry pressure. The fine scale mobility functions are
given as

λw(sn) = λcs
p
n. (9)

and
λw(sn) = λb(1− sn)q. (10)

Here λb, λc, p, and q are given parameters. These functional forms of capillary pressure
and mobility are not uncommon in practice.

3.1 Coarse capillary pressure

Our first observation is that from Equation (5) and (8), we have that

α(1− sn)−1/2 + β = Pc + ∆ρgz. (11)

From this, we can define the interface ζ which corresponds to the saturation sn = 0, or
the bottom of two-phase region,

γ = Pc + ∆ρgζ, 0 ≤ ζ ≤ H. (12)

To proceed, define the following dimensionless parameters

B =
∆ρgH

α
. (13)

and

P cap
∗ =

P cap − β
∆ρgH

, (14)

Note that P cap
∗ is a dimensionless coarse scale capillary pressure, and B is a Bond number.

We now turn to the approach outlined in Section 2.1. The inverse capillary function is
given by

scapn = 1−
(

α

pcap − β

)2

. (15)

Combining Equations (6) and (15), and using the definition of dimensionless coarse cap-
illary number, leads to

ŝn(P cap
∗ ) =


0, 0 ≤ ζ,

1−B−2
(
P cap
∗ +

z

H

)−2
, ζ < z ≤ H.

(16)

When eliminating ŝn from Equations (16) and (7), we need to take into account the two
cases suggested by Equation (16):

(A): Assume that ζ = 0. Then

Sn =
1

H

∫ H

0

[
1− B−2

(P cap
∗ + z

H
)2

]
dz = 1 +

1

B2

[
1

P cap
∗ + 1

− 1

P cap
∗

]
.

4



J. M. Nordbotten and H. K. Dahle

Hence

P cap
∗ =

1

2

−1 +

√
1 +

4B−2

1− Sn

 . (17)

Note that we chose the positive root because y has to be non-negative at least for some
values of coarse scale saturation Sn. In particular, we may calculate the coarse-scale
saturation when the capillary fringe first touches the lower aquifer plane. By Equation
(12) and (14) we that ζ = 0 implies P cap

∗ = B−1, from which the positive root in Equation
(17) follows.

(B): Assume that ζ > 0. Then

Sn =
1

H

∫ H

ζ

[
1− B−2

(P cap
∗ + z

H
)2

]
dz = 1− ζ

H
+

1

B2

[
1

P cap
∗ + 1

− 1

P cap
∗ + ζ

H

]
.

Solving the second-order polynomial leads to

P cap
∗ =

1

2

(
−[(2− Sn)− 2B−1] +

√
[(2− Sn)− 2B−1]2 − 4[(1− Sn)− 2B−1 +B−2]

)
.

(18)
Again, the positive root is the correct choice due to continuity.

We note in particular that the sharp interface model is obtained in the limit of negligible
variation in capillary pressure, e.g. α→ 0. Then Sn = 1− ζH−1 and P cap

∗ = Sn − 1.

3.2 Coarse mobility

Given the coarse pseudo-capillary-pressure-saturation function, we can construct a fine-
scale saturation distribution for any coarse scale saturation, using P cap(Sn) and Equation
(6). This fine-scale saturation can be substituted into the definitions of the coarse mobility
functions.

Assume that the permeability is constant in the vertical, so that permeability cancels
from the definition of coarse mobility. Then for ζ = 0 we obtain

Λn(P cap
∗ ) ≡ 1

H

∫ H

0
λn(ŝn)dz =

λc
H

∫ H

0
spndz = λc

∫ H

0

[
1− B−2

(P cap
∗ + z

H
)2

]p
dz =

λc

∫ 1

0

p∑
i=0

(
p

i

)
(−1)iB−2i(P cap

∗ + u)−2idu =

λc

p∑
i=0

(
p

i

)
(−1)i

B2i(1− 2i)

[
(BP cap

∗ +B)1−2i − (BP cap
∗ )1−2i

]
,

(19)

A similar calculation can be performed for ζ > 0. Introducing the simplifying notation

Q(u, p) =
1

B2i

p∑
i=0

(
p

i

)
(−1)i

1− 2i
u1−2i, (20)
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we can express the coarse non-wetting mobility as

Λn(Sn) =

{
λc [Q(P cap

∗ (Sn) + 1), p)−Q(P cap
∗ (Sn), p)] , ζ = 0,

λc [Q(P cap
∗ (Sn) + 1, p)−Q(B−1, p)] , ζ > 0.

(21)

For the wetting phase, the calculation is slightly more involved since we need to consider
the polynomial expansion of (1 − sn)q. This is accomplished with using the binomial
coefficients, such that we obtain

Λw(Sn) =

 λc
∑q
i=0

(
q
i

)
(−1)i [Q(P cap

∗ (Sn) +B, j)−Q(P cap
∗ (Sn), j)] , ζ = 0,

λc
∑q
i=0

(
q
i

)
(−1)i [Q(P cap

∗ (Sn) +B, j)−Q(B−1, j)] , ζ > 0.
(22)

4 Plume migration

Of special interest may be the tip speed of the plume [2, 3, 4]. An estimate of the
tip speed can be obtained by analyzing the fractional flow formulation for the coarse
governing equations:

∂ΦSn
∂t

+∇ · {FnU − ΛwFnK [G+∇Pc]} = 0. (23)

Here U is the total flow, and Fn is the fractional flow function, defined by

Fα =
Λα

Λn + Λw

It is well known from Buckley-Leverett theory that the solution to the fractional flow
formulation can be approximated using the hyperbolic part of Equation (23). For the
purposes of this discussion, the qualitative nature of the response is sufficiently captured
by considering the case of constant flow with no slope (see e.g. [4]),

∂Sn
∂t

+∇ · {Fn} = 0. (24)

Here we have, without loss of generality, scaled the system so that Φ/U = 1. The well-
known solution of Equation (24) is obtained by differentiating the convex hull of Fn. The
tip speed is then obtained by considering the position x for which Sn(x) = 0.

In the sharp interface limit (α→ 0), the fractional flow function is convex, and the tip
speed is therefore given simply as

vSItip =
dFn
dSn

∣∣∣∣∣
Sn=0

=
λc
λb
. (25)

We see here that the plume tip speed can be estimated as simply proportional to the
mobility ratio for the two fluids. We denote the sharp interface tip speed by superscript
SI, and it represents the upper bound on the tip speed.
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Figure 1: The left figure shows a contour plot of the tip speed as a function of the fine scale Bond
number (B) and the non-linearity of the non-wetting mobility function, represented by its exponent. The
exponent of the wetting phase mobility function was kept constant at q = 3. The right figure shows the
corresponding (coarse scale) saturation profiles for different Bond numbers. For this figure, the mobility
exponents were kept constant at p = 2 and q = 3. Note that the shock positions correspond to the
contours in the left figure, as expected.

We will choose α as a measure of the span of the fine-scale capillary-pressure-saturation
curve. When α > 0 the fractional flow function loses convexity. The tangent line (for an
initial condition with Sn = 0 and a boundary value above the shock saturation) is given
by

dFn
dSn

∣∣∣∣∣
Sn=S∗

n

=
Fn(S∗n)

S∗n
(26)

Here the shock saturation (which is the end-point of the tangent line) is denoted S∗n.
Due to the structure of the coarse scale mobility functions, the Equation (26) cannot

be calculated analytically. However, a numerical solution is straight forward.
In Figure 1 we have plotted the impact of fine-scale capillary pressure and the non-

linearity of the CO2 mobility on the tip speed of the plume, scaled by the total fluid
velocity. In this figure, a mobility ratio of 3.3 was used, which fixes an upper bound on
the tip velocity, according to Equation (25).

First, we note that the effect of capillarity is counter to common intuition: While
capillary forces are dispersive on the fine scale, they lead to self-sharpening behavior,
and slower tip speeds on the coarse scale. This is understood intuitively from the fact
that the capillary pressure smears the saturation distribution, and that the intermediate
saturations have lower mobility due to the non-linearity of the fine scale mobilities. This
is emphasized by considering the abscissa of the figure, where we see that the tip speed
is a strong function of the exponent (non-linearity) of the fine scale non-wetting mobility
function, in particular for low Bond numbers, which correspond to a large impact of
capillary forces.
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The right part of Figure 1 shows three invasion patters associated with different Bond
numbers. The highest Bond number, which is closest to the sharp interface model, has
predominantly been used in literature. This figure emphasizes that not only the tip speed,
but also the subsequent displacement pattern, is affected by the capillary forces.
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