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Summary. The immiscible displacement of a wetting fluid by a non-wetting one in 
heterogeneous porous media is modeled by using a multi-scale network-type analysis: (1) The 
pressure-controlled immiscible displacement of water by oil in pore-and-throat networks 
(length scale~1mm) is controlled by capillary forces. (2) The pressure-controlled immiscible 
displacement in uncorrelated or spatially correlated cubic lattices (length scale~1cm) is 
governed by capillary and gravity forces. At this scale, each node represents a network of the 
previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic 
networks (length scale~10cm), where each node represents a lattice of the previous scale, is 
simulated by accounting for capillary, gravity and viscous forces. The multi-scale approach 
along with the pore structure properties of soils can be employed to determine the transient 
responses of the pressure drop and axial distribution of water saturation, and estimate the 
effective (up-scaled) relative permeability functions, at the soil column scale.  

 
 
1 INTRODUCTION 

 The general procedure for the determination of the effective two-phase flow coefficents 
(relative permeability functions, capillary pressure curve) of soils is based on the 
interpretation of two-phase flow tests on soil columns with the aid of inverse modeling 
algorithms1,2. Microscopic pore structure analysis3 along with immiscible and miscible 
displacement experiments performed on undisturbed soil columns4,5 revealed that the 
microporous matrix of mineral soils, composed of sand, clay and silt, is strongly 
heterogeneous, and the flow pattern is dominated by preferential flowpaths. Under such 
conditions the applicability of the conventional macroscopic equations of the two-phase flow 
equations becomes questionable5. However, there is a lack of robust approaches that will 
enable us to examine the effects of multi-scale heterogeneities on the transient flow pattern 
and effective two-phase flow coefficients.          
 The effects of pore structure statistics and topology on the effective two-phase flow 
coefficients can be examined by using mechanistic quasi-static6 or dynamic7,8 pore network 
simulators of the immiscible displacement of two fluids. When simulating the contaminant 
transport in a reservoir, the macroscopic two-phase flow equations are solved at scales (0.1-
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1m) which are much larger than that of a pore network (~0.001-0.01m). Given that the 
viscous and gravity terms become pronounced at the scale of the numerical grid, 
computational tools are required to incorporate the soil heterogeneities up to the grid scale 
into the relative permeability curves (up-scaling)9,10.   
 In the present work, we develop a computational procedure that allows the calculation of 
the effective relative permeability curves of a heterogeneous soil column by employing as 
input data the statistics of pore space properties (length scale~1mm), and the permeability 
distribution at the scale of a cluster of pore networks (length scale~1cm) and the scale of a 
network of such clusters (length scale~10cm). A pore network model, a large-scale site 
percolation model, and a dynamic large-scale network simulator are employed successively in 
order to produce the capillary pressure and relative permeability curves at the three-scales, by 
using as input parameters for each scale the results of the previous one.  

 

2 PORE NETWORK MODEL 

The broad pore and throat radius distributions produced by the precise characterization of 
the pore space of mineral soils3 are decomposed into several narrow component distribution 
functions. These component distribution functions are employed for the computer-aided 
construction of Euclidean pore-and-throat networks. The pore space is modeled as a three-
dimensional network of “spherical” pores interconnected through “circular” and volumeless 
throats (primary porosity). The pore-diameter distribution (PSD), throat-diameter distribution 
(TSD), and primary porosity, , are used as input parameters for the construction of the 
primary network. The fractal porosity is regarded as roughness features along the pore-walls 
and is quantified by the ratio of secondary to total porosity, 

pε

tf εεA = , and fractal dimension 
. For the calculation of hydraulic conductivity the concept of the constricted unit cell of 

sinusoidal shape is adopted
sD

3.  
 

2.1 Calculation of capillary pressure and relative permeability curves 
The quasi-static oil/water drainage in a network is simulated by tracking the motion of 

menisci according to the capillary resistance encountered in throats and calculating the fluid 
saturation at each value of the capillary pressure when equilibrium is established. The 
hydraulic conductivity and the subsequent 1st scale relative permeability of each phase are 
calculated by imposing a pressure difference across it, “freezing” the other phase, formulating 
mass balances at each node (pore centre), solving the system of linear equations, and 
determining the pressure field. Two opposite sides of the network serve as entrance and exit, 
whereas periodicity is imposed along the other boundaries.  The simulated capillary pressure 
curves of several realizations (with the network permeability k  spanning some orders of 
magnitude) are fitted with the following models 

δ
owco kθcosγcP −=  (1)
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( ) ( ) ( ) c
m

cocwiwiw hPPSSS −=−− −11  (2)

where   is the capillary pressure,  is the entry pressure,  is the oil/water interfacial 
tension,  is the contact angle,  is the water saturation,  is the irreducible water 
saturation, and  are parameters to estimate. Respectively, the simulated water and oil 
relative permeabity curves are fitted with the following models 
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where  are parameters to estimate. 21
0

21 ooorowww e,e,a,k,e,e,a
 

3 LARGE-SCALE SITE PERCOLATION MODEL 
A cluster of pore networks can be regarded as a cubic lattice of nodes each representing a 

pore network with its flow properties [ ( ) ( ) ( )wrowrwwc Sk,Sk,k;SP,k ] obtained from pore network 
simulations. The very broad range of pore length scales probed in soils3 is reflected in a broad 
distribution ( )*k

* σ;kf 11  of the dimensionless node (pore network) permeability ( 〉〈= kkk* ) 
where  is the standard deviation. Depending on whether the permeabilities are assigned 
randomly or non-randomly to the nodes, an uncorrelated or spatially correlated permeability 
field may arise. The computer-aided construction of a spatially correlated cubic lattice of 
nodes is based on the approach reported in Tsakiroglou and Payatakes

*kσ 1

11. The overall 
permeability of the network is calculated by imposing a pressure difference across it, 
determining the influx rate with numerical solution of mass balances at nodes, and fitting the 
results to Darcy law.   

The quasistatic downward flow of oil in an initially water-occupied network is simulated 
as a site percolation process12. For a current value of the external pressure , the network is 
scanned to identify the nodes that have access to oil phase and satisfy the condition 

eP

( )ghρρPP owcoe −+≥  (5)

where  are the water and oil density, respectively, and  is the vertical distance of  a 
node from the top. Oil invades these nodes and water saturation is calculated according to 
Eq.(2) by setting 

ow ρ,ρ h

( )ghρρPP owec −−=  (6)

Eq.(2) is also used to update the fluid saturation in each node occupied by both fluids. The 
procedure is iterated until no change of water saturation occurs. Afterwards, the external 
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pressure is increased by a finite step and the calculations are repeated. The relative 
permeability functions resulting from pore network analysis are regarded identical for all 
nodes and used to compute the hydraulic conductance of each phase. The 2nd scale water and 
oil relative permeability curves are determined by imposing a pressure drop across the lattice 
and adopting a procedure similar to that followed in pore network approach. The simulation 
stops when no more changes of water saturation are observed any more. Finally, the simulated 
results are fitted with Eqs.(1)-(4) to estimate new parameter values of fitting functions          

4 DYNAMIC LARGE-SCALE NETWORK SIMULATOR 
 Permeabilities are assigned to the nodes of the large network according to the permeability 
distribution function ( )*k

* σ;kf 22 . The results of site percolation model along with Eqs.(1)-(4) 
are used to express the capillary pressure of each node as a function of local permeability and 
water saturation and the water & oil relative permeability of each node as function of water 
saturation. The gravity is incorporated into the local capillary pressure by defining the 
piezometric capillary pressure  

( ) ( ) ( )ghρρS,kPS,kP owwcw
'
c −+=  (7)

For each node , the effective  oil, , and water, , conductance are calculated in 
accordance to the relationships 

j j,og j,wg

( ) ( )wj,wrojNj,o κμSkklg =              ( ) wj,wrwjNj,w μSkklg =  (8)

where  are the water and oil viscosities,  is the node length, and ow μ,μ Nl wo μμκ =  is the 
viscosity ratio. When both fluids coexist in a node, its total conductance is obtained with 
volume averaging, according to the relation 
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by using the water and oil weight fractions 
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In order to calculate the flow rate between adjacent nodes, we define unit cells, each 
consisting of the 1/6th of two adjacent nodes. The volumetric flow rate through each unit cell, 

, is given by ijq

( )ij,cjiijij PΔPPgq −−=  (11)

where the conductance of the cell  is given by ijg

( )jijiij ggggg += 2  (12)
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ji P,P  are the pressures at the centres of adjacent nodes, and  is an additional pressure 
drop due to the capillary pressure. Assuming that the algebraic sum of the volumetric flow 
rates of unit cells adjoining to each node is equal to zero (mass balance), we get a system of 
coupled linear equations the solution of which provides the instantaneous pressure field of the 
network. The current flow rates of the invading fluid in each unit cell are utilized to calculate 
the time spans required for its partial filling (5-10%) with oil. The calculation of the time 
spans is restricted to unit cells where both fluids coexist. Afterwards, the minimum time span 

 is determined. Assuming pseudo steady-state conditions, the water and oil saturation in 
each unit cell (and hence in each node) at the end of the time interval, ,  are updated 
according to the instantaneous flow rate, namely 

ij,cPΔ

mintΔ

mintΔ

( ) ( ) ijmintij,wtΔtij,w qtΔVV
min

−=
+

 (13)

In order to calculate the up-scaled oil and water relative permeability functions, a constant 
pressure difference is imposed across the network, mass balances are applied to each node, 
and the system of coupled linear equations is solved. The overall oil and water outflow rates 
along with the pressure difference are finally introduced into the integrated form of the two-
phase flow Darcy equations. 
 The pressure difference across the large-scale network is so adjusted that the overall oil 
influx rate  is kept close to the target flow rate . The overall influx flow rate  of 
the injected fluid (oil) is calculated for several (4-5) values of the pressure difference, , 
imposed across the network, by solving the system of coupled linear equations obtained with 
mass balances at nodes. The results are fitted to the linear relationship:  

netQ oilQ netQ

netPΔ

BAQPΔ netnet +=  (14)

so that the parameters  are estimated. Afterwards, Eq.(14) is employed to compute  
for the target flow rate . Then, setting 

B,A oilPΔ

oilQ oilnet PΔPΔ = , network analysis is reused to examine 
whether the calculated total flow rate  deviates from its target value . If the deviation 
exceeds 1%, then the pressure difference in next iteration 

net,oQ oilQ

1+i  is updated according to 
( )oili,neti,neti,net QQAPΔPΔ −−=+1  (15)

and the calculations are repeated until convergence is attained. The procedure is repeated  
until oil breakthrough to occur and both the total oil saturation and total pressure drop across 
the network do not change any more.   

5 RESULTS AND DISCUSSION 
The methodology was applied to the datasets of an undisturbed and heterogeneous soil 

column that was used extensively in earlier multiphase transport studies4,5. The parameter 
values of the fluid system n-dodecane / NaCl aqueous solution ( =owγ 50mN/m , ) were 
used. Two-phase flow in pore networks was simulated for 5 realizations by sampling the 
component pore and throat size distributions from the complete ones of sample C7

οθ 6=

3. Although 
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the 1st scale simulated ( ) ( )wrowrw Sk,Sk  and  are sensitive to pore size statistics and 
subsequently to absolute permeability (Fig.1a,b), for the sake of simplicity, in the next scale 
of simulation, the relative permeability functions of nodes were represented by identical 
fitting functions whereas the  value was kept constant (Table 1).  

wiS

wiS

Parameter 1st scale 
simulations 

2nd scale 
simulations 

Parameter 1st scale 
simulations 

2nd scale 
simulations 

c  7.29 5.51 wa  0.161 1.0 
δ  0.3494 0.351 1we  0.855 3.52 

wiS  0.633 0.678 2we  4.247 - 
m  0.107 0.406 oa  1.0 0.129 

ch  8.1x10-7 1.6x10-11
1oe  1.738 1.836 

   2oe  - 1.820 
 

Table 1: Estimated parameter values of fitting functions 
 
In order to simulate a cluster of networks with a very broad range of permeabilities3, a log-

normal distribution with  was used as input parameter and spatially correlated 
permeability fields of varying average permeability were built. The 2

21 =*kσ
nd scale simulated 

( ) ( ) ( )wcwrowrw S;kP,Sk,Sk  curves along with the fitting functions (Table 1) are shown in Fig.2.  
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Figure 1: (a) Relative permeability and (b) capillary pressure curves from pore network simulations (1st scale 

two-phase effective flow coefficients) 

The rate-controlled ( ) immiscible displacement was simulated in uncorrelated 
and correlated large-scale networks, differing with respect to  (=0.2,0.5,0.8) of the input 
log-normal permeability distribution function. The 3

8105 −= xCa
*kσ 2

rd scale (up-scaled) water and oil relative 
permeability functions have the tendency to increase and decrease, respectively, with the 
width of permeability distribution increasing, whereas the spatial correlations have a weak 
effect on them (Fig.3a,b). The simulated transient responses of the pressure drop across the 
network and the axial distribution of water saturation (Fig.4a,b) are comparable to 
corresponding experimental results5  
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Figure 2: (a) Relative permeability and (b) capillary pressure curves from large-scale site percolation model (2nd 
scale two-phase effective flow coefficients) 
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Figure 3: Relative permeability curves from dynamic large-scale network simulator for (a) uncorrelated and (b) 

correlated permeability field (3rd scale two-phase effective flow coefficients) 
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Figure 4: Simulated transient responses of the (a) pressure drop and (b) axial distribution of water saturation at 

the soil column scale 

6 CONCLUSIONS 

A methodology is suggested to compute the up-scaled relative permeability functions of 
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heterogeneous soil columns from micro-structural information. The oil/water immiscible 
displacement is simulated at three successive scales each dominated by different flow 
mechanisms: (1) the pore network approach is governed by capillarity; (2) the large-scale site 
percolation model is dominated by capillary and gravity forces; (3) the large-scale rate-
controlled displacement is governed by the interaction of capillary, gravity and viscous forces.  
The effective two-phase flow coefficients calculated at each scale of simulation are fed as 
input data to the next scale. The methodology is demonstrated with its application to the 
prediction of the properties of an undisturbed soil column5.   
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