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Summary. We present here two different improvements for the SIA approach in reactive
transport.

1. The SIA approach is very well-suited to reactive transport when the chemistry is at
thermodynamic equilibrium. It allows to solve the non-linear chemical system locally in-
stead of globally. However, when the chemistry is - if only partially - kinetically-controlled,
this approach leads to treating kinetics as a displacement of equilibrium, which may cause
convergence or precision problems, directly linked to the characteristic times of the kinetic
laws.

For kinetically-controlled species, usually minerals, the chemical source terms of their
equation of evolution may be explicitly written according to the associated kinetic laws.
By separating the solving of the chemistry between the chemistry at equilibrium and
the kinetically-controlled chemistry, we propose a modified operator-splitting approach,
applied to a fixed-point algorithm. This methodology allows us to address and solve
locally problems of convergence. Tested in the mainframe of the ALLIANCES code, this
method has proven to be more precise and more robust in a series of test-cases. These
test-cases were chosen close to real reactive transport cases in the context of nuclear waste
storage simulations.

2. The fact that chemical concentrations come as a result of a local equilibrium makes
impossible to write explicitly the chemical source term in the reactive-transport equation.
It is fairly common to use an operator-splitting technique for sequential approaches and
the direct substitution for a global approach. In both cases the jacobian is very often
evaluated through a numerical approximation.
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We propose here to evaluate the jacobian through an analytic calculation, using the
mathematical properties of the chemical system (action mass laws), in the mainframe the
Non Linear Conjugate Gradient method. This analytical calculation is possible although
the analytical expression of the function whose jacobian is calculated is unavailable. Com-
paring it to the use of a numerical jacobian on a few test-cases, we see that the use of
an exact jacobian improves the robustness of the agorihtm an reduces the number of
iterations to convergence.

1 INTRODUCTION

The work we present here deals with reactive transport in a saturated porous media.
The classical modelling of this physical phenomena leads to a complex nonlinear coupled
system of PDE describing the evolution of the concentrations of the chemical species.
Since chemical systems contain very often large numbers of species, the number of vari-
ables grow easily around hundreds, which adds to the numerical difficulty of solving such
systems.

This field of investigation in numerical simulation has many applications, ranging from
CO2 sequestration to nuclear waste disposal. Various numerical methods have been used,
which we can split into two main groups: the global iterative approach (GIA), solving
directly the global system, and the sequential iterative approach (SIA) which splits the
transport operator and the chemistry operator, leading to the separate solving of a global
linear system and many local nonlinear chemical systems.

We propose here two modest improvements of the latter approach, one for adressing
specific problems raised by the use of kinetic laws in the chemistry, the other for using an
analytical jacobian with a NonLinear Conjugate Gradient method instead of a numerical
one, using the mathematical properties of the chemical system. Although unconnected,
both these studies are in the same mainframe, which is why we chose to present them
together.
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2 A venerable technique: Sequential Iterative Approach with operator-splitting
for reactive transport systems with chemistry at equilibrium

Let us introduce a few notations first:

VT volume of a elementary representative cell
ai(m) concentration of the aqueous specie i in moles per liter of aqueous volume

in the cell m
fj(m) concentration of the fixed specie j in moles per liter of aqueous volume

in the cell m
Nr number of chemical reactions
Ne number of chemical reactions at thermodynamical equilibrium
Na number of aqueous species af variable activity (i.e. all except water)
Nf number of mineral species (all of them of constant activity)
Ni number of chemical invariants
Ri,j chemical source term of the chemical specie i or j
Ir evolution term of the reaction r
R Nr-vector of the Ir/VT

ω porosity
M number of cells
L common transport M × M matrix for every mobile specie
νr

i,j stoechiometric coefficient of the specie i or j in reaction r
Sa stoechiometric matrix Nr ×Na for aqueous species
S stoechiometric matrix Nr × (Na +Nf ) for all species
~logK Nr-vector of the log of chemical equilibrium constants
~logΓ(m) Na-vector of the log of chemical activities in cell m

We start from a classical reactive transport system in a saturated porous media with
a variable porosity:

∂t(ωak) = −div(ak
~Ul−

⇒
D

a

k (~Ul)~∇ak) +Rk ∀i ∈ [1, Na]
∂t(ωfj) = Rj ∀j ∈ [1, Nf ]

ω = ω0 1 + f 0
mv

1 + fmv

with fmv =
∑
j

Vmol
j fj

Rk,j =
1

VT

Nr∑
r=1

νr
k,jIr ∀i ∈ [1, Na] ∀j ∈ [1, Nf ]

Source terms R are unavailable for chemical reactions at thermodynamic equilibrium,
since they have the necessary value so that at each time iteration the chemical system is
at equilibrium.
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The global system can be rewritten as follows:

∂t~c = ~L︸︷︷︸
transport

+ ST︸︷︷︸
stoichiometric

~r

ω = ω0 1 + S0
rf

0
mv

1 + Srfmv

~r = Φχ(ω,~c)

We know, through the rank-nullity theorem that there exists a matrix U such as UST

is equal to the null matrix. Therefore if ~u = U~c we get ∂t~u = U∂t~c = U ~L+ UST ~r = U ~L
~u is usually called the components vector, i.e. the vectors of chemical invariants ob-
tained from linear combinations of the chemical species concentrations. ~u is by definition
invariant in respect to the local chemistry.

We use then this property to split chemical and transport terms:

1. Transport step: we solve the linear and global system:

∂t~u = U ~L ~u = ( ~A, ~F ) (1)

2. Chemical step: we use the new values of ~u to calculate ~c through a set of nonlinear
and local chemical systems:

U~c = ~u

Sa
~logγ = ~logK

fj = 0 or saturation product = logKj

ω = ω0 1 + S0
rf

0
mv

1 + Srfmv

We can solve this system via various algorithms, such as Fixed-Point (or Picard) algo-
rithm, Non Linear Conjugate Gradient, Newton, Newton-Krylov...

3 Adaptation of this approach with a kinetically-controlled chemistry

3.1 What happens with a (even partially) kinetically-controlled chemistry?

Usually kinetics are treated as a displacement of the equilibrium. For example, if the
aqueous speciation is at equilibrium and the precipitation-dissolution kinetic (wich is a
farily common case in the context of reactive transport), the global system writes:

U~c = ~u

Sa
~logγ = ~logK

~f − ~f(t = 0) =
∫ t

0
ST

f ~rkdt

ω = ω0 1 + S0
rf

0
mv

1 + Srfmv
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Usually the kinetic law is then explicitely integrated for the global non-linear solving
method, and solved within the chemical step, wich is equivalent as considering kinetics
as a simple displacement of the equilibrium. The point of the operator-splitting approach
is to avoid the evaluation of the chemical source terms, since their analytical form is
unavailable, whereas, in the case of kinetics, the analytical form of chemical source terms
is known, since it is precisely a linear combination of the kinetic laws of the reactions
associated to the considered specie. Here we propose to use this property in the so-
called ”free kinetics” approach, by ”freeing” the kinetically-controlled chemistry from the
splitting of the operators.

3.2 ”Free Kinetics” approach

We make a few hypotheses:

1. The aqueous speciation is at equilibrium (very common for nuclear waste storage).

2. To each fixed species we associate one and only one reaction (sorption or precipita-
tion).

3. The kinetics laws are fully determined by the aqueous speciation and/or the time.

We now identify a chemical sub-system with only the species controlled by reaction at
thermodynamic equilibrium and split the chemical invariants in a kinetic and equilibrium
part: ~u = ~ueq + ~uκ. Then we take advantage of the explicit nature of the kinetic source
terms. We modify the classical SIA in this fashion:

1. Transport and ”free kinetics” (as in free from the chemical module) step:

∂t~ueq = U ~L − ∂t~uκ = U ~L − Φκ (2)

where Φκ is explicitely known through the kinetic laws.

2. Equilibrium chemical step : solving of the equilibrium sub-system using

{
Ueq~c = ~ueq

χe(~c) = 0

where χe stands for the chemical mass action laws associated to the sub-system
containing the reactions at equilibrium, as if the kinetically-controled minerals were
not taken into account. It’s a nonlinear system of Na unknowns with Ne chemical
equilibria et Ni pseudo-invariants. Thanks to the hypothesis made for the minerals
we know that Nr = Ne + Nf and that we have Na = Ni + Nr − Nf = Ni + Ne.
Therefore the chemical sub-system is closed.

5



Nikos LETERRIER, Huong-Lan TRAN and Laurent TROTIGNON

In the end we solve rigorously the same mathematical system. We can use this approach
in the context of a Fixed Point resolution. We use the following decomposition for every
chemical invariant:
u = A(aqueous) + F (fixed : kinetics) + E(fixed : equilibrium)
The Fixed Point algorithm can be classicaly written as follows (σn stands here for the

sum of explicit terms):

1. Transport step : ( ω
∆t
Id+ L)An+1,l+1 = − ω

∆t
En+1,l − ω

∆t
F n+1,l + σn

2. Equilibrium chemistry step : (~an+1,l+1, ~gn+1,l+1) = Φe(A
n+1,l+1 + En+1,l)

3. Kinetically-controlled chemistry step : F n+1,l+1 = F n + ∆tΦκ(~a
n+1,l+1)

This ”free kinetics” variant of the Fixed Point algorithm and its classical version are
rigorously equivalent after convergence. However we observe a substantial improvement
of the results in numerical tests, in terms of precision and stability, as we illutrate in the
following section via a few examples.

3.3 Test-cases with ALLIANCES code

First we consider an analytic test-case : 1D Diffusion of a single aqueous specie pre-
cipitating into a kinetically-controlled mineral, whose analytic solution writes:

∂tC = D∂x2C − kS(
C

Ks

− 1),

where C is the concentration of the aqueous specie, D the diffusion term, Ks the
saturation constant of the precipitate, k the kinetic constant and S the constant reactive
surface associated to the kinetic law. After having reached time and space convergence :

• With the classical approach : a L∞ relative error of 12% (huge!)

• With the ”free kinetics” approach : a L∞ relative error of 0.17% (order of the
precision of the coupling algorithm)

Using the same tools and the same mathematical system we gained 2 orders of magni-
tude just by changing the approach.

Then we consider a relatively simple 1D reactive transport system with only 9 minerals
(calcite, pyrite, gypsum, goethite, sphalerite, smithsonite, Fe(OH)3, hydrozincite, zinc
hydroxide) : this test-case emulates many difficulties of a study of the evolution of high
activity and long-term nuclear waste in a glass matrix (french concept) in contact with a
clayish environment

• General form of the kinetic laws: ω∂tfj = kS(Ωp1
j − 1)p2

∏
i∈Iκ

a
pκ

i
i with Ωj =

∏Na
i=1 a

µr
i

i

Ks
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• A stiff system with very different characteristic times: ksphalerite = 10−5mol.m−2.s−1 →
kgoethite = 10−14mol.m−2.s−1

• different catalysts: [H+]0.7 for calcite, [O2(aq)]0.5 for pyrite

• different laws for precipitation and dissolution (values of p1 and p2)

This test-case fails to converge with the classical approach but converges with the ”free
kinetics” approach. This behaviour was verified on many similar cases

4 Using an exact Jacobian for the Nonlinear Conjugate Gradient method

Using a Nonlinear conjugate gradient method2,3,4 in reactive transport is a competitive
alternative to the classical Fixed Point algorithm in this mainframe.

When chemical reactions are taken at thermodynamic equilibrium, it is impossible to
write explicitly the chemical source terms in the reactive species’ equations of evolution.
Thus it is fairly common to use an operator-splitting technique for sequential approaches
and the direct substitution for a global approach. In both cases the Jacobian, when
needed, is very often evaluated through a numerical approximation, which requires
solving an extra chemistry system at each step.

We aim here to evaluate the jacobian through an analytical calculation, using the
mathematical properties of the chemical system (action mass laws), in the mainframe of
a global approach, but without direct substitution. This analytical calculation is pos-
sible although the analytical expression of the function whose jacobian is calculated is
unavailable. It has been used in the context of a Newton-Krylov method1.

4.1 Outline of the method

Let us begin with a short reminder of the Nonlinear Conjugate Gradient method in
general for solving f(x) = 0:

• Compute the step-length: αk = −f(xk)
Tdk/d

T
k∇f(xk)dk

• Update the solution: xk+1 = xk + αkdk

• Compute the residual: rk+1 = f(xk+1)

• Compute the new search direction, e.g. with Polak-Ribière formula dk+1 = −rk+1 +
βk+1dk where βk+1 = max(0, rT

k+1(rk+1 − rk)/r
T
k rk)

The evaluation of ∇f(x)d can be made via two different approaches:

∇f(x) · d ≈ f(x+ εd)− f(x)

ε
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1. Numerical approximation: ∇f(x) · d ≈ f(x+ εd)− f(x)

ε

2. Analytical calculation: f(T ) = diag(ω))T + ∆t · diag(L) ·Ψ(T ) = 0

∇f = diag(diag(ω)) + ∆t · diag(L) · ∂Ψ
∂T
→ Calculation of ∂Ψ

∂T
in each cell

The main drawback of the numerical approximation is that it implies to solve the
chemistry a second time, wich is very time-consuming, and of course that its precision is
lower. We propose here to use the analytical calculation.

We use the following variable:

W =



c(1)
...

c(m)
...

c(M)

 wherec(m) =

[
ai(m)

fj(m)

]
(Na +Nf )M vector

u(m) is the vector of the Ni chemical invariants in cell m. The chemical invariants are
linear combinations of the concentrations, chosen so that their value is independant of
chemical reactions.

Refering to the notations introduced in the previous paragraphs we have ∀m u(m) =
Uc(m). Let us write now:

Y =



u(1)
...

u(m)
...

u(M)

 vecteur (Ni)M composantes

We have of course: (IdM × U)W = Y .
We get the following system:

∂tY = (IdM × U)(L× J)W
(IdM × U)W = Y

Sa
~logΓ(m) = ~logK ∀m

(3)

with J =

(
IdNa 0

0 0

)
matrice (Na+Nf )× (Na +Nf ).

The system (3) is temporally discretized in the following fashion:
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Y n+1 = Y n + θ∆t(IdM × U)(L× J)W n+1 + (1− θ)∆t(IdM × U)(L× J)W n

Sa
~logΓ(m) = ~logK ∀m

(IdM × U)W n+1 = Y n+1

(IdM × U)W n = Y n

(4)
Let Sn be the explicit terms at time tn. By writing ΨL(W ) = θ∆t(IdM ×U)(L×J)W ,

we get Y n+1 = Sn + ΨL(W n+1). ΨL is a multilinear function of W , independant with
time.

Let Ψχ(Y ) be the function (similar to Φχ) giving the solution of the chemical equilib-
rium system in function of the chemical invariants Y . The remaining term can be then
written as follows:

R(W ) = W −Ψχ ◦ΨL(W ) = W −Ψ(W ) (5)

Ψ cannot be evaluated analytically, but its jacobian can be. We have:

Ψ′ =

(
∂Ψl

∂Wp

)
l,p∈[1,(Na+Nf )M ]

(6)

We know that:
∂Ψl

∂Wp

=
∑

q∈NiM

∂Ψl

∂Yq

∂Yq

∂Wp

.

1. The
∂Yq

∂Wp

can be evaluated at the beginning of the simulation since we have explic-

itly:

Y (W ) = Sn + ΨL(W ) = Sn + θ∆t(IdM × U)(L× J)W

The transport terms being independant of W the
∂Yq

∂Wp

are given by the matrix

(NiM × (Na +Nf )M) : θ∆t(IdM × U)(L× J).

2. The
∂Ψl

∂Yq

can also be evaluated at the beginning of the simulation. We write:

Ψ =



ψ(1)
...

ψ(m)
...

ψ(M)

 ,
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we get then
∂Ψl

∂Yq

=
∂ψ(m)s

∂u(m′)t

= 0 if m 6= m′, with m,m′ ∈ [1,M ], s ∈ [1, Na +Nf ] et

t ∈ [1, Ni]. We still have to evaluate the MNi(Na +Nf ) following terms:
∂ψ(m)s

∂u(m)t

.

We get them by solving locally a linear system. The solution will be valid for
every cell with the same chemical system. We have ∀m ∈ [1,M ] a set of Nr linear
equations:

Sa
~logΓ = ~logK =⇒ Sa

~logγψ = ~logK (7)

And we have:

∂log(γ(m)sψ(m)s)

∂u(m)t

=
1

γ(m)sψ(m)sln(10)

∂(γ(m)sψ(m)s)

∂u(m)t

The activity coefficient γ are supposed independant of the chemical concentrations,
so we get:

∂log(γ(m)sψ(m)s)

∂u(m)t

=
1

ψ(m)sln(10)

∂ψ(m)s

∂u(m)t

(8)

m et t being chosen, every set of Nr equations (7) can be derivated by
∂

∂u(m)t

to

get (using (8)) Nr linear equations for the Na +Nf
∂ψ(m)s

∂u(m)t

terms.

For the Ni necessary remaining equations, we can apply the same operation for the
Ni following equations : Uψ(m) = u(m). In the end we have a linear system of

Na +Nf equations for Na +Nf unknowns
∂ψ(m)s

∂u(m)t

.

So we get an exact evaluation of the jacobian, wich can be used in the course of a
Newton or non-linear conjugate gradien method for solving W −Ψ(W ) = 0.

We compare both approaches on two test-cases: one analytical and one taken from the
MOMAS Reactive Transport Benchmark5.

4.2 1D Numerical Tests

These two numerical mono-dimensional test-cases lead to the same conclusion: for the
same precision of the results, the Exact jacobian approach takes less iterations to converge
than the Numerical jacobian approach, in terms of iterations at each time step, and the
Exact jacobian approach requires less CPU time than the Numerical jacobian approach.
Moreover, this difference increases when the CFL (Courant-Friedrichs-Levy) parameter
increases.
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4.2.1 Analytical test-case

We consider five chemical species, convection-diffusion, aqueous chemistry and sorp-
tion. The chemical species are conventionaly noted X1, X2 and C for the aqueous species,
S for the sorbing spiecie and CS for the sorbed specie. The stoichiometric coefficients
and equilibrium constants are given as:

X1 X2 S K
C −1 0 0 1
CS 0 1 1 1

The hydraulic transport parameters are:

• porosity: ω = 1

• pore velocity: 10−3

• diffusion: 10−3

We use the following initial and boundary conditions:

T1 T2 TS
Initial values of the total concentrations m · L−3

(x− 2)2 + 1 1 5
Imposed total concentrations at inflow boundary

4cos2t+ 1 4sin2t+ 1
Zero total concentrations gradient at outflow boundary

The analytical solution for the total concentrations gives:

T1(x, t) = (x− 2)2cos2t+ 1 ; T2(x, t) = (x− 2)2sin2t+ 1

The following table proposes the comparison of the CPU time for the Exact and Nu-
merical Jacobian:

Jacobian cells CFL = 10−4 2.5.10−4 5.10−4 10−3

Numerical 50 12 6 3 2
100 46 27 15 11
200 207 101 73 60
400 963 512 405 363

Exact 50 10 4 2 1
100 31.4 13 8 4.6
200 103 55 31.5 20
400 491 240 151 99
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4.2.2 MOMAS Benchmark easy 1D test-case

We consider now 12 chemical species, convection-dispersion, aqueous chemistry and
sorption and two different media. The species are conventionnaly noted X1→4 and C1→5

and S for the aqueous species, S for the sorbing spiecie and CS1 and CS2 for the sorbed
species. The stoichiometric coefficients and equilibrium constants are given as:

X1 X2 X3 X4 S K
C1 0 -1 0 0 0 10−2

C2 0 1 1 0 0 1
C3 0 -1 0 1 0 1
C4 0 -4 1 3 0 0.1
C5 0 4 3 1 0 103

CS1 0 3 1 0 1 103

CS2 0 −3 0 1 2 10−1

Here in the absence of an analytical solution, we use the solution given by the classical
Fixed Point algorithm as a reference for the evaluation of the precision of the solution.
The hydraulic transport parameters are:

• porosity: ωA = 0.25 ωB = 0.5

• pore velocity: uA = 2.2.10−2 uB = 1.1.10−2

• dispersion: DA = 2.2.10−4 DB = 6.6.10−4

We use the following initial and boundary conditions:

T1 T2 T3 T4 TS
Initial values of the total concentration m · L−3

Medium A 0 -2 0 2 1
Medium B 0 -2 0 2 10

Imposed total concentrations at inflow boundary
0.3 0.3 0.3 0

Zero total concentrations gradient at outflow boundary

Here in the absence of an analytical solution, we use the solution given by the classical
Fixed Point algorithm as a reference for the evaluation of the precision of the solution.
The following table proposes the comparison of the CPU time for the Exact and Numerical
Jacobian:
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Jacobian cells 2.2.10−3 5.5.10−3 1.1.10−2 2.2.10−2

Numerical 100 46 22 15 9
200 164 97 57 38
400 730 417 279 204
800 3877 2484 1673 DNC

Exact 100 35.5 16 10 5.5
200 117 60 34.8 21
400 471 260 152 91
800 3484 1897 803 587

5 CONCLUSION

Both methods described here can be used to improve the quality of reactive transport
calculation using the sequential iterative approach. In both cases we still lack theoretical
proof of the advantage of using these techniques instead of the more classical options.
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