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Summary. In traditional two-phase flow equations capillary pressure is simply a func-
tion of saturation. There is a hysteresis in capillary pressure-saturation curves resulted
under drainage and imbibition. However, extended capillary pressure-saturation re-
lationships suggest that there is a unique relationship among capillary pressure, satu-
ration, and macroscopic interfacial area under drainage and imbibition. Our objective
in this study is to to analyze relationship among capillary pressure, saturation, and
specific interfacial area under primary drainage and main imbibition under different
dynamic conditions for different viscosity ratios.

We have developed a dynamic pore-network model for two-phase drainage and
imbibition experiments. To include capillary diffusion and corner flow involved in
drainage and imbibition processes, angular cross sections have been assumed for the
network elements, namely pore bodies and pore throats in shape of octahedron and
parallelepiped, respectively. Furthermore comparedwith previous dynamic pore-network
models, we have improvements pressure field solver as well as the algorithm for satu-
ration update. This allows us to simulate flow dynamics under different flow regimes
and viscosity ratios.

Thermodynamic-based theory of multiphase flow in porous media

Conventional equations for multiphase flow in porous media are based a central
equation - capillary pressure-saturation relationship. This equation which is written
based on the thermodynamically-equilibrium assumption, is commonly written as:

P n − P w = P c(Sw) (1)
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in which, P c is the capillary pressure, Sw is the saturation of the wetting phase, and P n

and P w are the nonwetting and wetting phases pressures, respectively.
In fact, there are two major assumptions in this equation: a) fluid distribution and

subsequently capillary pressure is a function of wetting phase saturation only, and
b) fluids pressure difference is equal to capillary pressure (at all times and under all
conditions). Traditional equations of multiphase flow in porous media have been chal-
lenged, primarily based on theoretical works using a thermodynamic approach byHas-
sanizadeh and Gray (1990, 1993a). They developed a theory of two-phase flow in which
interfacial areas were introduced as separate thermodynamic entities, possessingmass,
momentum, and energy.

Regarding the first assumption in Equation 1, it is known that there is hysteresis in
P c-Sw curves obtained for drainage and imbibition processes. Hassanizadeh and Gray
(1993b) have suggested that the non-uniqueness in the P c-Sw relationship is indeed
due to the absence of specific interfacial area and they proposed the following equation
for capillary pressure:

P c(Sw) = P c(Sw, anw) (2)

A number of computational and experimental works have shown that under a wide
range of drainage and imbibition histories, P c-Sw-anw surfaces more or less coincide.
This means that inclusion of anw leads to the removal or significant reduction of hys-
teresis in P c-Sw relationship (e.g. Chen et al., 2007, Cheng et al., 2004,Held and Celia, 2001,
Joekar-Niasar et al., 2008, 2009, 2010a, Porter et al., 2009, Reeves and Celia, 1996). But, all
these studies are based on equilibrium configurations of the fluids and none of them
has studied coincidence of P c-Sw-anw surfaces under non-equilibrium conditions for
drainage and imbibition processes.

Analysis tool

We employ pore-network modelling as an upscaling technique from pore scale to
macroscale.

Dynamic pore-network model can simulate transient behaviour of flow with time
for various capillary numbers and viscosity ratios. Capillary number (Ca) is tradi-
tionally defined as the ratio of viscous forces of the invading phase to capillary forces
(µinvqinv

σnw ). The first dynamic pore-network model reported in the literature was devel-
oped by Koplik and Lasseter (1985) to simulate imbibition process in a two-dimensional
pore network. Later, several dynamic pore-network models were developed for vari-
ous applications (see e.g. Aker et al., 1998a,b, Al-Gharbi and Blunt, 2005, Constantinides
and Payatakes, 1996, Dahle and Celia, 1999, Dias and Payatakes, 1986a,b, Nordhaug et al.,
2003, Singh and Mohanty, 2003, Van der Marck et al., 1997).

Strong nonlinearity at the pore-scale causes severe numerical stability problems in
dynamic pore-network models such that simulation for unfavorable viscosity ratios
or for capillary-dominated flow is troublesome. In order to avoid these problems and
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also to be able to simulate imbibition as well as drainage under a wide range of vis-
cosity ratios and different flow regimes, a new computational algorithm and a robust
pore-network model has been developed in Joekar-Niasar et al. (2010b), which employs
a semi-implicit approach is used for the saturation update in order to obtain numeri-
cal stability in simulations even for capillary-dominated flow. Thus, the resulting set
of equations for fluid pressures contain both advection-type terms (corresponding to
viscous forces) and diffusion-type terms (corresponding to capillary forces).

Furthermore, to mimic the geometry of pore space in granular media, pore bodies
and pore throats are represented as truncated octahedron and parallelepiped, respec-
tively. Local capillary pressure is defined based on local interface curvature, which
has been related to local pore body saturation. Computational and geometrial details
of this DYnamic POre-network SImulator for Two-phase flow (DYPOSIT) are given in
Joekar-Niasar and Hassanizadeh (2010), Joekar-Niasar et al. (2010b).

Objectives

In this paper, we investigate the following main questions:

• Evolution of average capillary pressure associatedwith fluid-fluid interfaces with
saturation under favorable (M ≥ 1) and unfavorable (M < 1) conditions for
primary drainage and main imbibition processes.

• Analysis of the relationship among capillary pressure, saturation and specific in-
terfacial area under drainage and imbibition process for favorable and unfavor-
able viscosity ratios.

1 MODEL DESCRIPTION

1.1 Model features

1.1.1 Structure and geometry

The pore network is a regular three-dimensional lattice with fixed coordination
number of six. Pore bodies and pore throats are presented by “truncated octahedron”
and “parallelepiped”, respectively. This allows simultaneous existence of both phases
in a single pore element. The octahedron pore bodies can be unequally truncated since
they are connected to pore throats of different sizes, as shown in Figure 1(a). Truncated
sections of the octahedron have the shape of square pyramids with base width of 2rij

(which is equal to the size of pore throat ij) as shown in Figure 1(a). Cross sections
through the vertices of pore bodies and the pore throat connecting them is shown in
Figure 1(c). The radius of the inscribed sphere in pore body, Ri, and the radius of the
inscribed circle in the cross section of pore body i, R′

i, are shown in Figure 1(b). It

should be noted that Ri =
√

6

3
R′

i. The size distribution of pore bodies is specified by a
truncated log-normal distribution, with no spatial correlation.
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Figure 1: a) Schematic presentation of a pore body and its connected pore throats. Truncated parts of
the pore body have the width of 2rij , which is the inscribed radius of pore throat ij. b) Cross sections of
the pore body along the vertices and through the edges. Radius of inscribed sphere is denoted by R and
radius of inscribed circle in the cross section along vertices is denoted by R′ c) Cross section of two pore
bodies and connected pore throats. Geometrical configuration for determining the pore throat radius

(rij ) based on pore bodies radii, R′
i =

√
6

2
Ri and R′

j =

√
6

2
Rj .
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Pore throat radius is determined based on the pore bodies radii. Consider two pore
bodies i and j, with a centre-to-centre distance dij (see Figure 1(a)), and cross section

inscribed radii R′
i and R′

j, respectively. We define the dimensionless R̃i and R̃j as fol-
lows:

R̃i = R′
i/dij, R̃j = R′

j/dij (3)

We can calculate dimensionless inscribed radius of the pore throat ij, r̃ij, as follows:

r̃ij = ̺i̺j(̺
1/n
i + ̺

1/n
j )−n, n > 0 (4)

̺i =
R̃i sin(π/4)

(1 − R̃i cos(π/4))n
(5)

̺j =
R̃j sin(π/4)

(1 − R̃j cos(π/4))n
(6)

where n is a positive number, which can control ratio between the radii of pore bodies
and pore throat introduced as “aspect ratio”. Larger n results in smaller pore throats
(larger aspect ratios).

1.1.2 System parameters and specifications

Table 1 shows fluid and network properties used in the simulations. Viscosity of the
nonwetting phase is kept constant equal to 0.001 and viscosity ratio is defined as the
M = µn

µw .

Parameter Symbol Value Unit

Contact angle θ 0.0 degree
Interfacial tension σnw 0.0725 kgs−2

Wetting fluid viscosity µw 0.0001,0.001, 0.01 kgm−1s−1

Non-wetting fluid viscosity µn 0.001 kgm−1s−1

Total no. of pore bodies in flow direction nz 45 -
Total no. of pore bodies in lateral directions nx, ny 35 -

Domain Size - 1.9×1.9×2.37 mm3

Permeability K 1.43×10−12 m2

Table 1: Fluid and network properties used in the simulations.

Statistical properties of pore body inscribed sphere radii, pore throat inscribed circle
radii, and aspect ratio distributions are shown in Table 2. Aspect ratio is defined as pore
body inscribed sphere radius divided by pore throat radius. Corresponding to Table 2,

5



V. Joekar-Niasar and S. Majid Hassanizadeh

Specifications
Ri rij Rasp

(mm) (mm)
min 0.0077 0.0048 1.55
max 0.0200 0.0162 4.00
mean 0.0125 0.0084 2.25

st. deviation 0.0028 0.0017 0.38

Table 2: Statistical properties of the radii of inscribed spheres in pore bodies (Ri), in pore throats rij , and
aspect ratio distribution Rasp.
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Figure 2: Network geometry properties a) Aspect ratio distribution b) Pore body and pore throat distri-
butions.

Figures 2(a) and (b) show the aspect ratio distribution as well as pore body-pore throat
size distributions, respectively .

Aspect ratio is controlled by the parameter n given in Equation 6, which is equal to
n = 1.0 in this work.

1.2 Governing Equations

1.2.1 General equations for two-phase flow

The local capillary pressure for pore body i is defined as:

pc
i = pn

i − pw
i = f(sw

i ) (7)

A flux Qα
ij is assigned to a pore throat ij for each phase separately. A separate volume

balance for each phase in a pore body is employed:

Vi
∆sα

i

∆t
= −

∑

j∈Ni

Qα
ij , α = w, n (8)

where, Ni is the set of all pore throats connected to pore body i, Vi is the volume of pore
body i, sα

i is the saturation of phase α in pore body i. The volumetric flux of phase α in
pore throat ij is given by an equation similar to Washburn formula:

Qα
ij = −Kα

ij∆pα
ij, α = w, n (9)
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where Kα
ij is a function of geometry and fluid occupancy of pore throats. Note that as-

signing different pressures and conductivities to each phase (as opposed to one single
pressure per body and one effective conductivity per pore throat; (see e.g. Al-Gharbi
and Blunt, 2005, Mogensen and Stenby, 1998) has major advantages. For example, it al-
lows us to include mechanisms related to the local capillary pressure (such as snap-off,
counter-current flow) in simulations. Equations (7), (8), and (9) form a determinate set
to be solved for sw

i , p
w
i , and pn

i .

1.2.2 Pressure field solver

To reduce the computational demand, the general equations are reformulated in
terms of a total pressure p̄i, defined as the saturation-weighted average of fluid pres-
sures in a pore body:

p̄i = sw
i pw

i + sn
i p

n
i (10)

Combining Equations 7 and 10 and using sn
i + sw

i = 1, we get the following equations
for pressures of wetting and nonwetting phases:

pw
i = p̄i − sn

i pc
i (11)

pn
i = p̄i + sw

i pc
i (12)

Substitution of Equations 11 and 12 in Equation 9 results in an equation for p̄i:

∑

j∈Ni

(Kw
ij + Kn

ij)(p̄i − p̄j) =

−
∑

j∈Ni

[(Kn
ijs

w
i − Kw

ij (1 − sw
i ))pc

i + (Kw
ij (1 − sw

j ) − Kn
ijs

w
j )pc

j] (13)

In this equation, the right-hand side as well as the coefficients of the left-hand side
depend on local saturation only. This linear system of equations was solved for p̄i by
diagonally-scaled biconjugate gradient method using SLATEC mathematical library
(Fong et al., 1993).

1.2.3 Saturation update

After calculating p̄i, pressures of phases can be back-calculated from Equation 11
and Equation 12, based on saturation values. Then, commonly Equation 9 can be
used to calculate Qα

ij , and using Equation 8 new saturation values can be calculated
explicitly. This procedure, however, will result in numerical problems for a capillary-
dominated flow regime, as mentioned in Koplik and Lasseter (1985). He found that the
explicit saturation update was not numerically stable for very small capillary numbers
and he could not successfully simulate the capillary-dominated flow. Therefore, we
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have developed a semi-implicit approach, analogous to fractional flow formulation, to
control the nonlinearities under such flow conditions. Details of the semi-implicit satu-
ration update are given in Joekar-Niasar et al. (2010b). The resulting discretized equation
reads:

(
Vi

∆t
−
∑

j∈Ni

Kn
ijK

w
ij

Ktot
ij

∂pc
ij

∂sw
ij

)
(sw

i )k+1 +

(
∑

j∈Ni

Kn
ijK

w
ij

Ktot
ij

∂pc
ij

∂sw
ij

)
(sw

j )k+1 = (14)

Vi

∆t
(sw

i )k +
∑

j∈Ni

Kn
ij

Ktot
ij

Qtot
ij

where, superscript k denotes time step level, and
∂pc

ij

∂sw
ij

is calculated from the upstream

pore body. One should note that since Qtot
ij and Kα

ij are calculated from time step k,
this scheme is not fully implicit. Here also the diagonally-scaled biconjugate gradi-
ent method from SLATEC mathematical library (Fong et al., 1993) was used to solve
Equation 15.

1.2.4 Time step

The time step is determined based on time of filling of pore bodies by the nonwetting
phase or wetting phase, denoted by ∆ti. The wetting phase saturation of a pore body
varies between 1 and sw

i,min as we assume that a pore body may be drained down to a
minimum saturation. On the other hand, if local imbibition occurs, the wetting phase
saturation in a pore body can go back to 1. So, we calculate ∆ti for all pore bodies,
depending on the local process, from the following formulas:

∆ti =

{
Vi

qn
i

(sw
i − sw

i,min) for local drainage, qn
i > 0

Vi

qn
i

(1 − sw
i ) for local imbibition, , qn

i < 0
(15)

where, the accumulation rate of the nonwetting phase is defined as qn
i =

∑
j∈Ni

Qn
ij .

Then, the global time step is chosen to be the minimum ∆ti.

∆tglobal = min{∆ti} (16)

It should be noted that we imposed a truncation criterion of 10−6 for sw
i − sw

i,min and
1−sw

i in order to reduce number of solving the equations. Also note that in Equation15,
there is a correspondence between saturation change (numerator) and the accumula-
tion rate of nonwetting phase (denominator). That is, when local saturation is close to
the limits, the accumulation rate of nonwetting phase is also very small. This means
that ∆ti always remains finite and nonzero.
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1.3 Local rules

1.3.1 Capillary pressure curves for pore bodies and pore throats

Local capillary pressure within a pore is a function of the curvature of fluid-fluid
interface through Young-Laplace equation, regardless of whether drainage or imbibition
occurs. For a given fluid-fluid interface position with in a pore body, we can determine
corresponding capillary pressure and saturation. Therefore, for a given pore body, a
unique relationship between capillary pressure and local saturation can be obtained.
Local pc

i -s
w
i curves for drainage and imbibition are discussed in the following sections.

Drainage During drainage, invasion of a pore throat by the nonwetting fluid is con-
trolled by the entry capillary pressure. Thus, an interface is located within a pore body.
If a pore body is filled with both fluids, the wetting phase is residing along edges of the
pore bodies. The saturation of the pore body (i.e. volume of the wetting fluid divided
by the volume of the pore body) depends on the prevailing capillary pressure. For a
given capillary pressure, curvature of the interface in the edges of the pore body can be
calculated and, consequently, the corresponding saturation can be estimated. Details
of derivation of the (local) pc

i -s
w
i relationship for an octahedron pore body have been

presented in Joekar-Niasar and Hassanizadeh (2010).
The resulting pc

i -s
w
i relationship in terms of the radius Ri of the inscribed sphere of

the pore body i and the other geometrical parameters is:

pc
i = 2σnwκi, κi =





( 1

rij
− 1

Ri
)(

sw
i −sdr

i

1−sdr
i

)3.5 + 1

Ri
sw

i ≥ sdr
i

1

Ri

(
sw
i

sdr
i

)a

, a = 1

2.98sdr
i −3.85

smin
i < sw

i < sdr
i

(17)

in which, sdr
i is the wetting fluid saturation corresponding to the inscribed sphere given

by the following equation:

sdr
i = 1 − πR3

i

3
√

3R3
i −

√
2
∑

j∈Ni
r3
ij

(18)

, smin
i is the minimum possible saturation in a simulation given by Equation 19, and rij

is the pore throat inscribed radius.
Obviously it is impossible to completely displace the wetting phase from the corners

of a pore body. We assume that each pore body has a minimum saturation sw
i,min, that

depends on the imposed global pressure difference (P c
global defined in § 2.2) as well as

the blockage of the invading fluid. The capillary blockage of invading fluid (P c
eblock

) is
also a global variable, defined to be the minimum entry capillary pressure of all pore
throats that are in the vicinity of the nonwetting phase but not invaded by it yet. Thus,
using the pc

i -s
w
i relationship given by Equation17, the local minimum wetting phase

9
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saturation in a pore body may be determined as follows:

sw
i,min = sdr

i

(
Ri

2σnw
min{P c

global, P
c
eblock

}
)2.98sdr

i −3.85

(19)

A capillary pressure should be also assigned to a pore throat once it is invaded and
both phases are present. We assume that capillary pressure in a pore throat is equal to
the capillary pressure of the upstream pore body.

Imbibition We define local capillary pressure-saturation relationship as a function
of saturation as well as pore throats filling to consider effect of cooperative fillying.
Details of derivation of local pc

i -s
w
i relationship during imbibition are given in Joekar-

Niasar and Hassanizadeh (2010). They have suggested the following relationships for a
truncated octahedron pore body:

pc
i = 2σnwκi, κi =





(
1

rij
− 1

Ri

(
simb
i

sdr
i

)a)(
sw
i −simb

i

1−simb
i

)3.5

+ 1

Ri

(
simb
i

sdr
i

)a

sw
i ≥ simb

i

1

Ri

(
sw
i

sdr
i

)a

, a = 1

2.98sdr
i −3.85

smin
i < sw

i < simb
i

(20)
where simb

i is the pore body saturation at which one pore throat is still filled with the
nonwetting phase.

1.3.2 Interfacial area versus saturation in a pore body

Interfacial area under drainage and imbibition has been determined differently. Un-
der drainage three zones have been defined: a) local wetting saturation is larger than
inscribed sphere (sdr

i < sw
i ), b) local saturation is smaller than inscribed sphere volume

but at least one of the pore throats has not been invaded. c) residual saturation, where
all pore throats have been invaded (sw

i < sw
i (κdr

i )).

Anw
i (mm) =





1

2κi
(0.6155 − θ)

(
12
√

6Ri − 8
∑

j∈Ni
rij

)
sw

i < sw
i (κdr

i )

Anw
dr + (4πR2

i − Anw
dr )
(

κi−κdr
i

Ri−κdr
i

)
sw

i (κdr
i ) ≤ sw

i < sdr
i

4π
κ2

i

sdr
i < sw

i

(21)

Similar to the equation above, an equation for imbibition can be used. The only differ-
ence is the criterion for simb

i as shown below.

Anw
i (mm) =





1

2κi
(0.6155 − θ)

(
12
√

6Ri − 8
∑

j∈Ni
rij

)
sw

i < sw
i (κdr

i )

Anw
dr + (4πR2

i − Anw
dr )
(

κi−κdr
i

Ri−κdr
i

)
sw

i (κdr
i ) ≤ sw

i < simb
i

4π
κ2

i

simb
i < sw

i

(22)
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1.3.3 Entry capillary pressure for a pore throat

We assume that a pore throat will be invaded by the nonwetting phase when the
capillary pressure in a neighboring pore body becomes larger than the entry capillary
pressure of the pore throat. For a pore throat with square cross section, the entry capil-
lary pressure can be calculated as follows (due toMa et al., 1996,Mayer and Stowe, 1965,
Princen, 1969a,b, 1970):

pc
e,ij =

σnw

rij

(
θ + cos2 θ − π/4 − sin θ cos θ

cos θ −
√

π/4 − θ + sin θ cos θ

)
(23)

where rij is the radius of inscribed circle of the pore throat cross section, and θ is the
contact angle.

1.3.4 Conductivities of pore throats

Conductivities of pore throats are determined based on their size and fluid occu-
pancy. One of the following two cases may occur.

a) A pore throat is occupied by the wetting phase only. For this case, the following
equation was obtained by Azzam and Dullien (1977):

Kw
ij =

π

8µwlij
(reff

ij )4 (24)

Kn
ij = 0

where µw is the viscosity of the wetting phase, lij is the length of pore throat, and

reff
ij =

√
4

π
rij (25)

b) A pore throat is occupied by both phases. Then, following Ransohoff and Radke
(1988) we can write:

Kw
ij =

4 − π

βµwlij
(rc

ij)
4 (26)

Kn
ij =

π

8µnlij
(reff

ij )4 (27)

where

rc
ij =

σnw

pc
ij

(28)

reff
ij =

1

2
(

√
r2
ij − (4 − π)rc2

ij

π
+ rij) (29)

11
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In (26), β is a resistance factor that depends on geometry, surface roughness, crevice
roundness and other specifications of the cross section. Detailed explanation about
β can be found in Zhou et al. (1997). As mentioned earlier, the pore throat capillary
pressure pc

ij is set equal to the capillary pressure of the upstream pore body.

1.3.5 Snap-off

If the local capillary pressure in a pore throat becomes smaller than a critical value
(defined below), the corner interfaces become unstable and snap-off will occur. The
criterion for snap-off in a square cross section pore throat has been defined as follows
(Vidales et al., 1998):

pc
ij ≤

σnw

rij
(cos θ − sin θ) (30)

We assume that as soon as snap-off occurs, the nonwetting phase retreats instanta-
neously into the two neighboring pore bodies, and the pore throat is filled up with the
wetting phase.

2 SIMULATIONS AND ANALYSIS

2.1 Network size

To analyze Darcy-scale equations using pore-networkmodels, size of the pore-network
should be at least one REV. REV sizewas determined by performing quasi-static drainage
simulations in networks with different sizes but the same statistical parameters. Our
simulations show that the REV size for these statistical parameters is a cube with length
of 35 pore bodies. However, we have added five buffer layers at each boundary to re-
duce the boundary effect. Thus the network has a length of 45 pore bodies along the
main flow direction and these buffer layers are not included in the averaging window.

2.2 Boundary conditions

For our simulations, we assume that the network is connected to a nonwetting phase
reservoir on one side and a wetting phase reservoir on the other side. Phase pressures
are specified at these boundaries. Side boundary conditions are assumed to be peri-
odic.

For drainage and imbibiton simulations the following procedure is followed:
a) Drainage: Pressure at the nonwetting phase reservoir is fixed to P n

top and pressure
at the wetting phase reservoir is fixed to zero. The difference between the two bound-
ary pressures during drainage is referred to as “global pressure difference” P c

global. Af-
ter the invasion of a pore throat at the wetting-phase boundary by the nonwetting
phase, it is assumed that the gradient of capillary pressure within the invaded pore
throat is equal to zero. In other words, we assign nonwetting phase pressure at the

12
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downstream of pore throat equal to the nonwetting phase pressure that the upstream
of pore throat.

b) Imbibition: Similar to the drainage process, pressure at the nonwetting phase
reservoir is fixed to P n

top and pressure at the wetting phase reservoir is fixed to zero.
However, P n

top should be so small that imbibition process can occur continuously. Dur-

ing imbibition similar to the drainage, it is assumed that
∂pc

ij

∂x
= 0 as long as a pore

throat at the nonwetting phase boundary is filled with both fluids.

2.3 Drainage simulations

For primary drainage, the network is initially fully saturatedwith the wetting phase.
Simulation of drainage starts with raising the pressure of the nonwetting phase reser-
voir, and establishing a global pressure difference, P c

global, across the network. When
the pressure difference is larger than the entry pressure of the largest pore throat con-
nected to the nonwetting phase reservoir, drainage starts. In quasi-static simulations,
the nonwetting phase reservoir pressure is increased in incremental steps so that the
network is invaded in steps. At the end of each step, when there is no flow (static
conditions), the overall saturation of the network is determined. Then, global pressure
difference is increased again. In dynamic simulations, the imposed P c

global is so large
that the whole network could be flooded. The simulations are continued till change of
average saturation in a selected averaging window is not significant.

For main drainage simulations, the initial saturation occupancy is based on the last
snapshot of the quasi-static main imbibition experiment. The simulation procedure is
otherwise similar to the primary drainage simulation.

2.4 Imbibition simulations

Consider a pore network filled by the nonwetting phase at the end of a drainage
experiment. The wetting phase is still present along edges of pore bodies and pore
throats. Starting from an equilibrium condition, all pore bodies have the same capillary
pressure. The global capillary pressure is decreased by reducing the nonwetting-phase
reservoir pressure or increasing thewetting-phase reservoir pressure. A decrease in the
global capillary pressure causes the interfaces to relax gradually and main imbibition
experiment will start. The imbibition simulation will stop when all pore throats at the
outflow boundary (nonwetting phase reservoir) are fully filled with the wetting phase.

For the quasi-static imbibition simulations, an approach similar to the drainage has
been employed.

2.5 Averaging procedure

Our simulations result in local-scale variables such as pressure, saturation, and
fluxes. These have to be averaged over the averaging window to obtain macroscopic
variables. Average saturation is simply defined the ratio of the wetting phase to the
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total pore volume of the network:

Sw =
V w

V w + V n
=

∑npb

i=1 sw
i Vi∑npb

i=1 Vi

(31)

Sn = 1 − Sw

in which npb is the total number of pore bodies. Specific interfacial area is calculated
using the following equation:

anw =

∑npb

i=1 Anw
i

Vnetwork
(32)

We calculate average capillary pressure as follows:

P c =

∑npb

i=1 pc
iA

nw
i∑npb

i=1 Anw
i

(33)

2.6 Effect of viscosity ratio on fluid distribution

Fluid entrapment at pore scale and subsequently fluid distribution at macro-scale
is controlled by pore scale invasion mechanisms, such as piston-like movement, snap-
off, etc. Depending on the process (drainage or imbibition) importance of these mech-
anisms can vary. For instance, snap-off during drainage is not as important as during
imbibition, since during imbibition nonwetting phase is the receding phase. As a re-
sult, at the end of imbibition process, a significant amount of the nonwetting phase
remains behind as residual saturation. Due to the importance of imbibition in reser-
voir engineering, dependence of residual saturation on capillary number, viscosity ra-
tio, contact angle and pores aspect ratio has been studied significantly (see e.g. Dias
and Payatakes, 1986a,b, Hughes and Blunt, 2000, Mogensen and Stenby, 1998, Vizika et al.,
1994).

In this section, the effects of capillary number, global pressure difference, and viscos-
ity ratio on snap-off and residual saturation and saturation profile are studied. Because
in simulations with constant boundary pressure, capillary changes continuously, first
we performed some additional imbibition simulations with constant wetting phase
flux specified as the wetting phase boundary condition and constant pressure at the
nonwetting phase boundary. By performing imbibition simulations at various fluxes,
the nonwetting phase residual saturation was determined as a function of capillary
number (plotted in Figure 3), for the case of equal fluid viscosities (M = 1.0). This
figure shows that with increase of capillary number, the residual nonwetting phase
saturation decreases. The largest decrease occurs for capillary numbers between 10−6

and 10−4. At higher capillary numbers, the snap-off mechanism is suppressed.
In our main simulations, with constant boundary pressure, capillary number varied

significantly as imbibition occurred. This is made apparent in Figure 4, where capillary
number is plotted for various viscosity ratios and global pressure difference values as

14



V. Joekar-Niasar and S. Majid Hassanizadeh

0
0

.1
0

.2
0

.3
0

.4
0

.5

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

Capillary number

R
e

s
id

u
a

l 
N

o
n

w
e

tt
in

g
 P

h
a

s
e

 (
S

o
r)

M=1

Figure 3: Effect of capillary number on residual nonwetting saturation for M = 1.0.

a function of wetting phase saturation during imbibition. It is evident that the largest
variation occurs in the case of M = 10. This case is also the most sensitive to the global
pressure difference. A larger global pressure difference results in higher capillary num-
ber and thus a lower residual nonwetting phase saturation. This is because with the
increase of capillary number, probability of snap-off decreases and consequently flood-
ing efficiency increases.

Similar effects can be observed when examining the average saturation profile along
the network, shown in Figure 5. Here, the saturation is averaged over a cross section
of the network located at position x and then plotted against x/l at different times,
and for two different viscosity ratios. An interesting result here is the non-monotonic
behavior of saturation forM = 10. This is because snap-off is suppressedwith invasion
of the wetting phase as the capillary number increases. Moreover, the saturation front
for the case of M = 10 is steeper than for M = 1.0. This is because for M = 10, the
resident nonwetting-phase is more viscous than for M = 1.0 and local imbibition is
resisted. The fact that viscosity ratio greatly affects fluid occupancy in the network is
illustrated in Figure 5(c) where the histogram of the local pore body saturation at the
end of imbibition process, for ∆P = −10kPa, is shown. It is clear that with decrease of
viscosity ratio (viscous wetting fluid), less snap-off occurs andmore flooding efficiency
is resulted.
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To show the effect of viscosity ratio on saturation profile during drainage, saturation
profiles for M = 1.0 and 0.1 for ∆P = 45kPa have been shown in Figure 6. As it can
be seen, for M = 0.1 the invading front is unstable and the slope of the front is much
smaller than for M = 1.0. Comparison between invasion front for these two cases
shows how significant is the effect of local heterogeneities in porous medium on sat-
uration profile. Consequently, the flooding efficiency is smaller in M = 0.1 compared
with M = 10. However, due to the fact that during imbibition snap-off is the major
mechanism that controls the entrapment of the nonwetting phase, effect of viscosity
ratio on residual saturation is more significant during imbibition than drainage.

2.7 Relationship among P c, Sw, and anw under non-equilibrium conditions

The transient capillary pressure-saturation curves depend strongly on global capil-
lary pressure and viscosity ratio, as shown in Figures 7(a) and 8(a). Behavior of cap-
illary pressure versus saturation under non-equilibrium conditions is different from
quasi-static curves. This difference is more pronounced under imbibition compared
to drainage process. Under imbibition conditions, there is no sudden drop of capillary
pressure under non-equilibrium conditions comparedwith the equilibrium conditions.
These is due to the fact that at the beginning of imbibition process, all the interfaces are
pinched into the corners (which causes a large capillary pressure). Those interfaces can
be relaxed, which are close to the wetting fluid. Thus, with graduation invasion of the
wetting fluid, more interfaces will be relaxed. This trend, which is gradual, depends
on the viscosity ratio and global capillary pressure. Smaller global capillary pressure
and smaller viscosity ratios result in steeper drop of capillary pressure versus satu-
ration as shown in Figure 8(a). These figures show that there is no unique capillary
pressure-saturation curve and obviously there should be another effective parameter
that is variable. Since Hassanizadeh and Gray (1993a) suggested specific interfacial area
as a new variable that should be included, we have plotted anw-Sw relationships for
drainage and imbibition processes in Figures 7(b) and 8(b), respectively. As it is ob-
vious, these curves similar to P c-Sw curves depend also on global capillary pressure
and viscosity ratio. One should note that specific interfacial area plotted here includes
arc menisci area as well as main terminal menisci area. Depending on the angularity
of the system, magnitude of specific interfacial area can change, but the qualitative be-
havior and its non-equilibrium dependence does not change Joekar-Niasar et al. (2010a).
With decrease of viscosity ratio, more interfacial area is created, which is in agreement
with Joekar-Niasar et al. (2010a). Effect of viscosity ratio on specific interfacial area is
more pronounced during imbibition compared with drainage. This is due to fact that
the effect of viscosity ratio on flooding efficiency is more important during imbibition
compared to the drainage (snap-off effect). As it is known, under unfavorable con-
ditions, flooding efficiency decreases (trapping increases). The increase of trapping
causes increase of interfacial area.

Finally we can plot all the drainage and imbibition data points on two surfaces,
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Figure 5: Wetting phase saturation profiles for∆P = −10kPa for a) M = 10 and b) M = 1. Dark-colored
curves show the wetting phase saturation distribution at the time of breakthrough of the wetting phase.
Light-colored curves show the saturation profile at earlier times. c) Distribution of local saturation of
pore bodies at the end of main imbibition simulations forM = 0.1, 1, 10 for∆P = −10kPa. ForM = 0.1,
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Figure 7: a) P c-Sw, and b) anw-Sw non-equilibrium curves for drainage process for different global
capillary pressures (P c

global =45, 60, 90 kPa) and different viscosity ratios (M =0.1,10,10).
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capillary pressures (P c
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Figure 9: Contour maps for specific interfacial area versus saturation and capillary pressure for a)
drainage b) imbibition. 3D presentations of all data points resulted from c) drainage and d) imbibition
simulations.

separately. Contour maps and three-dimensional presentations of interfacial area for
given capillary pressures and saturations are shown in Figure 9. As it can be observed,
all data points resulted from drainage simulations create a well-behaved surface. This
trend is less visible for imbibition curves due to limited range of data points. How-
ever, there is still a smooth surface generated by imbibition data points. The contour
maps shown in Figures 9(a) and (b) show a qualitative reasonable trend in variation
of specific interfacial area. As it can be seen in both curves the contour lines incline
downwards toward the x-axis. Furthermore, with increase of wetting fluid saturation,
magnitude of interfacial area decreases. Since the range of imbibition data points is
limited it is difficult to propose the uniqueness of the drainage and imbibition P c-Sw-
anw surfaces. The overlapping parts of the contour maps show a decrease in hysteresis
observed in P c-Sw curves for drainage and imbibition.

3 CONCLUSION

We have employed a dynamic pore-network model, called DYPOSIT, to investigate
qualitative behavior of macroscopic fluid-fluid interfacial area under non-equilibrium
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conditions. The pore-network model consists of truncated octahedron pore bodies and
parallelepiped pore throats. The angularity in cross sections allows for simultaneous
flow of both nonwetting and wetting fluids. This means that capillary diffusion in the
network is properly taken into account. The pressure field is computed for each phase
separately to consider counter-current flow within pore throats. To improve numerical
stability of the model under capillary dominated flow, a semi-implicit algorithm is
employed. This allows us to simulate flow dynamics for different flow regimes and
viscosity ratios for drainage as well as imbibition.

We have shown that there is no unique capillary pressure-saturation curve. This
curve depends on dynamics of the system, namely global pressure difference and vis-
cosity ratio. Under unfavorable conditions more fluid interfacial area can be created.
This effect is strongly pronounced under imbibition process, where complicated pore-
scale mechanisms, such as snap-off and cooperative filling occur. All data points plot-
ted for drainage and imbibition simulations (under different dynamic conditions) cre-
ate well-behaved P c-Sw-anw surfaces. These surfaces are qualitatively in agreement
with each other in terms of variation of interfacial area with capillary pressure and sat-
uration. A very important remark is that all the cross sections of network elements are
angular. This feature of the model provides the possibility of snap-off in all network
elements, which leads to a very complicated invasion process especially during imbi-
bition. Since accurate simulation of snap-off and cooperative filling during imbibition
using dynamic pore-network models is not straight forward, there are some simplifi-
cations in the modeling procedure. Nevertheless, there is still a reasonable agreement
between P c-Sw-anw contour maps resulted from drainage and imbibition processes.
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